• Title/Summary/Keyword: PAR transmittance

Search Result 4, Processing Time 0.016 seconds

Optical Characteristics of Two New Functional Films and Their Effect on Leaf Vegetables Growth and Yield (2종류의 기능성필름이 광학특성과 엽채류 생육과 수량에 미치는 영향)

  • Kwon, Joon Kook;Khoshimkhujaev, Bekhzod;Park, Kyoung Sub;Choi, Hyo Gil;Lee, Jae-Han;Yu, In Ho
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.314-320
    • /
    • 2014
  • Three leaf vegetables, namely green lettuce, red lettuce (Lactuca sativa) and red-veined chicory (Cichorium intybus) were grown in minigreenhouses covered with two new functional films and conventional polyethylene film (PE). Seedlings of leaf vegetables were transplanted in a plastic troughs filled with soil-perlite mixture. Two functional films were made from polyolefin (PO) material. Measurement of optical characteristics showed that polyolefin films have better transmittance for the photosynthetic active radiation (PAR, 400-700nm) and higher absorptance for the ultraviolet radiation (UV, 300-400nm) in comparison with the conventional PE film. After three months of utilization higher loss in PAR transmittance was observed for conventional PE film. Leaf vegetables growth was enhanced and yield was increased in greenhouses covered by new functional films.

Effects of High Performance Greenhouse Films on Growth and Fruit Quality of Tomato (기능성 피복재가 토마토 생육 및 품질에 미치는 영향)

  • Kwon, Joon-Kook;Cho, Myeomg-Whan;Kang, Nam-Jun;Kang, Yun-Im;Park, Kyoung-Sub;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • This study was performed to investigate the effect of high performance greenhouse films on growth and fruit quality of tomato. For this purpose, polyolefin (PO), fluoric, antidrop, antifog and thermal films were compared to normal film, ethylene vinyl acetate (EVA). In spectral irradiance of the films, UV ($300{\sim}400nm$) transmittance was highest in fluoric film and lowest in PO film. PAR (photosynthetically active radiation, $400{\sim}700nm$) transmittance was higher in fluoric, thermal and PO film, and near infrared ray (NIR, $700{\sim}1,100nm$) transmittance was higher in high performance films, compared to the EVA film. Total light transmittance was higher in order of fluoric, antifog, anti drop, PO, thermal, and EVA film. Day air temperature in greenhouse was highest under fluoric film and lowest under EVA film due to the light transmittance, while night air temperature was highest under PO and anti drop film due to the thickness of film. Tomato fruits grown under the high performance films had 0.2 to $0.5^{\circ}Bx$ higher soluble solids and 15 to 30% higher lycopene content, compared to those grown under the EVA film. The results showed that tomato fruit quality such as soluble solids and lycopene content can be heightened in terms of much irradiation and better light quality of high performance films, compared to the nomal film, EVA film.

Optical and Physical Properties of Covering Materials for Plastic Greenhouse (플라스틱하우스용 피복재의 광학.물리적 특성)

  • Kwon, Joon Kook;Choi, Young Hah;Park, Dong Kum;Lee, Jae Han;Um, Yeong Cheon;Park, Joong Choon
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.141-147
    • /
    • 2001
  • To compare to the optical and physical properties of covering materials for plastic greenhouse, EVA(ethylene vinyl acetate, 0.08 mm), polyorefine antifog (0.1 mm), fluoric (0.06 mm), diffused (0.15 mm), polyorefine antidrop (0.15 mm) and PET (polyethylene terephthalate, 0.5 mm) films were used. The small greenhouse (5.4$\times$18.5$\times$2.9 m, W$\times$L$\times$H) investigated during 3 years form 1997 to 1999. After covering materials were used for greenhouse covering during 30 months, UV (300-400 nm) transmittances of diffused film and PET were appeared from 25 to 26%, while those of fluoric film and the other films were 76% and from 63 to 67%. For PAR (photosynthetically active radiation, 400-700 nm), the transmittances of fluoric, antidrop, PET, antifog, EVA, and diffused film were 86.5%, 80.5%, 76.3%, 75.5%, 74.1% and 61.9% respectively. The losses of PAR transmittance of EVA and the antidrop film during period between 7 days and 30 months were higher value 12% and lower value 6% than any other film. Under the canopy of tomato plants, light intensities of the diffused film and the antifog film were 2.5 times and 1.4 times higher than those of PET. Tensile resistances of fluoric film at the break point were the higher than those of antifog film and diffused film. While impact resistance of the antidrop film was the highest value, but the fluoric film was the lowest. Air temperature inside the greenhouse for the day showed to be changed the similar light transmittance of the films. But the increasing order of air temperature for the night was PET, fluoric, antidrop, diffused, antifog and EVA film. Especially, air temperature in the PET was 4$^{\circ}C$ higher than that in the EVA. Solar radiations of the fluoric film, the antidrop film, PET and antifog film in the greenhouse were 32%, 15%, 11% and 4% higher than those of PET. However, those of the diffused film was 7% less than PET.

  • PDF

Effect of Red or Blue Resin Added to Greenhouse Covering Films on Growth of Tomato and Pepper (적색 및 청색 수지 첨가 피복재가 토마토와 고추의 생육에 미치는 영향)

  • Kwon, Joon-Kook;Cho, Myeomg-Whan;Kang, Yun-Im;Park, Kyoung-Sub;Woo, J.G.
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.284-289
    • /
    • 2010
  • Spectral irradiance of greenhouse covering films that three resins (red, blue, red plus blue) were added to get higher utilization efficiency of sunlight were compared to the normal film in this study. Growth and yield of tomato and pepper grown under the films were also investigated. Transmittance of PAR (photosynthetically active radiation, 400~700 nm) and sunlight (300~1,100 nm) of red or blue resin-added films increased by 5 to 6% and 0.5 to 1.0%, respectively. As compared to the normal film, fruit yield and soluble solid content of tomato and pepper grown under red plus blue resin-added film increased by 15 to 20% and by $0.5^{\circ}Bx$.