• Title/Summary/Keyword: PAL enzyme

Search Result 43, Processing Time 0.028 seconds

Development of Modified Phenylalanine Ammonia-lyase for the Treatment of Phenylketonuria

  • Kim, Woo-Mi
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.104-110
    • /
    • 2009
  • Phenylketonuria (PKU) is an inherited metabolic disorder caused by mutations in the phenylalanine catabolic enzyme, phenylalanine hydroxylase (PAH). The use of phenylalanine ammonia-lase (PAL) by oral and parenteral routes as a therapeutic drug for PKU has been severely limited due to inactivation by intestinal proteolysis and immune reactions. PEGylation was applied to PAL to reduce the degrees of antigenicity and proteolytic inactivation. Kinetic experiments with native PAL and pegylated PALs were performed, and pH stability, temperature stability, and protease susceptibility were evaluated. Enzyme linked immunosorbent assay (ELISA) was carried out to measure the immune complex between pegylated PALs and antiserum that had been extracted from a PAL-immunized mouse. Pegylated PAL, especially branched pegylated PAL (10 kDa, 1:32), was more active for phenylalanine and more stable in pancreatic proteases than native PAL. Native PAL was optimal at pH 8.5, corresponding to the average pH range of the small intestine; the same finding was noted for pegylated PALs. All linear and branched pegylated PALs had low reactivity with mouse antiserum, especially the 1:16 formulation with linear 5-kDa PEG and the 1:32 formulation with branched 10-kDa PEG. Therefore, we suggest the 1:32 formulation with branched 10-kDa PEG as the most promising formulation for enzyme replacement therapy.

Purification of Phenylalanine Ammonia-lyase from Strawberry Fruits during Ripening (연화 딸기의 Phenylalanine Ammonia-lyase에 관한 연구)

  • 이광희;윤경영
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.430-433
    • /
    • 1996
  • The activity of PAL, an initial and key regulatory enzyme in biosynthesis of phenolics, peaked during ripening stage. The enzyme activities were 5.60 and 4.25 units/100g fr. wt. in ripening and overripening stages. The increase in PAL activity in ripening strawberry fruits is due to de novo synthesis of the enzyme. PAL extracts from ripe strawberry fruits have a native molecular weight of about 260, 000 Da.

  • PDF

Enhanced Activity of Phenylalanine Ammonia Lyase in Permeabilised Recombinant E. coli by Response Surface Method

  • Cui, Jian-dong;Li, Yan;Jia, Shi-Ru
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.494-499
    • /
    • 2009
  • To improve phenylalanine ammonia lyase (E.C.4.3.1.5-PAL) activity in recombinant Escherichia coli, Some approaches for improving phenylalanine ammonia lyase (PAL) activity in recombinant E. coli were developed following preliminary studies by means of response surface method. The results shown that permeabilization with combination of Triton X-100, cetyl trimethyl ammonium bromide (CTAB), and acetone enriched cellular recombinant PAL activity significantly, which improved over 10-fold as compared with the control (untreat cell), as high as 181.37 U/g. The optimum values for the tested variables were Triton X-100 0.108 g/L, CTAB 0.15 g/L, and acetone 45.2%(v/v). Furthermore, a second-order model equation was suggested and then validated experimentally. It was indicated that addition of surfactants and organic solvents made the cells more permeable and therefore allowed easier access of the substrate to the enzyme and excretion of the product, which increased the rate of transport of L-phenylalanine and trans-cinnamic acids. These improved methods of PAL activity enrichment could serve as a rich enzyme source, especially in the biosynthesis of L-phenylalanine.

Phenylalanine Ammonia-Lyase Gene (NtPAL4) Induced by Abiotic Stresses in Tobacco (Nicotiana tabacum)

  • Han, Woong;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.23 no.6
    • /
    • pp.535-540
    • /
    • 2010
  • Phenylalanine ammonia-lyase (PAL), a key enzyme of the phenylpropanoid biosynthesis pathway, is activated by a number of developmental and environmental cues. The coding region of the NtPAL4 gene was 2,154 bp in length, and its deduced protein was composed of 717 amino acids. Sequence analysis of NtPAL4 cDNA from tobacco (Nicotiana tabacum L.) revealed high structural similarity to PAL genes of other plant species. The NtPAL4 gene exists as a single copy in the tobacco plant, and its transcripts were strongly expressed in flowers and leaves. NtPAL4 expression was significantly induced in response to NaCl, mannitol, and cold treatments, but it was not induced by abscisic acid (ABA). NtPAL4 expression decreased gradually after treatment with ABA and $H_2O_2$; however, NtPAL4 transcripts accumulated after treatment with methyl viologen (MV). Our results suggest that the NtPAL4 gene may function in response to abiotic stresses.

A comparison of individual and combined $_L$-phenylalanine ammonia lyase and cationic peroxidase transgenes for engineering resistance in tobacco to necrotrophic pathogens

  • Way, Heather M.;Birch, Robert G.;Manners, John M.
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.301-308
    • /
    • 2011
  • This study tested the relative and combined efficacy of ShPx2 and ShPAL transgenes by comparing Nicotiana tabacum hybrids with enhanced levels of $_L$-phenylalanine ammonia lyase (PAL) activity and cationic peroxidase (Prx) activity with transgenic parental lines that overexpress either transgene. The PAL/Prx hybrids expressed both transgenes driven by the 35S CaMV promoter, and leaf PAL and Prx enzyme activities were similar to those of the relevant transgenic parent and seven- to tenfold higher than nontransgenic controls. Lignin levels in the PAL/Prx hybrids were higher than the PAL parent and nontransgenic controls, but not significantly higher than the Prx parent. All transgenic plants showed increased resistance to the necrotrophs Phytophthora parasitica pv. nicotianae and Cercospora nicotianae compared to nontransgenic controls, with a preponderance of smaller lesion categories produced in Prx-expressing lines. However, the PAL/Prx hybrids showed no significant increase in resistance to either pathogen relative to the Prx parental line. These data indicate that, in tobacco, the PAL and Prx transgenes do not act additively in disease resistance. Stacking with Prx did not prevent a visible growth inhibition from PAL overexpression. Practical use of ShPAL will likely require more sophisticated developmental control, and we conclude that ShPx2 is a preferred candidate for development as a resistance transgene.

The Effects of Abscisic Acid Application Time and Times on Fruit Coloration of 'Kyoho' Grapes (Abscisic acid의 처리시기 및 횟수가 포도 '거봉'의 착색에 미치는 영향)

  • Han Dong-Hyeon
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.298-303
    • /
    • 2005
  • This experiment was carried to investigate the optimum time and times of abscisic acid (ABA) treatment for the coloration in 'Kyoho' grapes. The L-phenylalanine ammonia-lyase (PAL) enzyme activities were showed highly in both ABA treatments at veraison and 10 days after veraison. However, PAL enzyme was slightly higher in ABA treatment at 10 days after veraison than in that at veraison. Anthocyanin content showed a tendency that were increased during fruit development after veraison in all treatments, and was the highest in ABA treatment at 10 days after veraison. Fructose and glucose as soluble sugars were detected by HPLC and showed little differences in all treatments. In times of ABA treatment, PAL activity showed a tendency that decreased after increased in all treatments. PAL activity in 2 times treatment of ABA was higher than other treatments. Also, anthocyanin content was highest in 2 times treatment of ABA, as 5 folds of control and folds of 1 time treatment of ABA. Both fructose and glucose contents in all ABA treatments was slightly higher than control.

Production and Characterization of Phenylalanine Ammonia-lyase from Rhodotorula aurantiaca K-505

  • Cho, Dae-Haeng;Chae, Hee-Jeong;Kim, Eui-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.354-359
    • /
    • 1997
  • Optimal cultivation conditions for the production of phenylalanine ammonia-lyase(PAL) from Rhodotorula aurantiaca K-505 were selected, and the kinetic parameters of the produced PAL were determined. The most suitable carbon and nitrogen sources were glucose and tryptone, respectively. The strain expressed PAL constituttively when using the optimized semi-complex media. High cell density culture could be critical for maximal production of PAl since the PAL ynthesis was growth associated. maximum PAL activity was observed at initial pH 6.0. although the ll growth was not markedly affected by temperature between 22 and 28$^{\circ}C$, the cells yielded the maximum PAL activity when cultivated at 22$^{\circ}C$. The maximum activity for deamination of L-phenylalnine to trans-cinnamic acid was observed around pH 8.8. The PAL activity gave the maximum at 45$^{\circ}C$, and greatly decreased at higher than 5$0^{\circ}C$. Activation energy({TEX}$E_{a}${/TEX}) calculated from Arrhenius equation was 6.28 kcal/mol in the range of 22$^{\circ}C$ to 4$0^{\circ}C$. A oolf plot showed that the enzyme reaction follows Michaelis-Menten equation, whose {TEX}$K_{M}${/TEX} and {TEX}$V_{max}${/TEX} values were 4.65$\times${TEX}$10^{-3}${/TEX} M and 0.89$\mu$ mol/mg-min respectively.

  • PDF

Immunological Relationships among Fungal and Plant Phenylalanine Ammonia-lyases and Bacterial Histidine Ammonia-lyase (진균과 식물의 Phenylalanine Ammonia-lyase 그리고 세균의 Histidine Ammonia-lyase 간의 면역학적 관계 분석)

  • Hyun, Min-Woo;Yun, Yeo-Hong;Suh, Dong-Yeon;Han, Ji-Hae;Kim, Seong-Hwan
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.205-212
    • /
    • 2011
  • Phenylalanine ammonia-lyase (PAL) from the maize pathogen Ustilago maydis was analysed immunologically to obtain insights into the structural relationships between plant PAL and fungal PAL and between PAL and histidine ammonia-lyase (HAL). Cross-reactivity was found among all the PAL proteins from different species tested, using antibodies raised against both plant and fungal PALs. Both anti-Alfalfa and anti-popular PAL antibodies strongly recognized plant PALs but only weakly recognized fungal PALs. Antibodies raised against U. maydis PAL only weakly recognized the Rhodotorula glutinis yeast PAL. The anti-U. maydis PAL antibodies showed low affinity for the plant PALs but they bound strongly to Pseudomonas bacterial HAL. Significant cross-reactivity between the two plant PAL antibodies and the bacterial HAL was also observed. Both the anti-Ustilago PAL and the anti-poplar PAL antibodies displayed similar enzyme inhibition patterns, including moderate inhibition of bacterial HAL activity. However, the bacterial HAL antibody inhibited only Ustilago PAL. The PAL and HAL antibodies tested showed no inhibition against yeast PAL. This is first report on the immunological relationships between PAL and HAL.

Influence of Controlled- and Uncontrolled-pH Operations on Recombinant Phenylalanine Ammonia Lyase Production in Escherichia coli

  • Cui, Jian Dong;Zhao, Gui Xia;Zhang, Ya Nan;Jia, Shi Ru
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.954-958
    • /
    • 2009
  • Effects of controlled- and uncontrolled-pH operations on phenylalanine ammonia lyase (PAL) production by a recombinant Escherichia coli strain were investigated at uncontrolled-pH ($pH_{UC}$) and controlled-pH ($pH_C$) of 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5 in bioreactor systems. The results showed that the recombinant PAL activity was improved significantly by controlled pH strategy. Among the $pH_C$ operations, the highest PAL activities were obtained under $pH_C$ 7.5 strategy where cell mass ($OD_{600\;nm}$) and PAL activity was 1.3 and 1.8 fold higher than those of $pH_{UC}$, respectively. The maximum PAL activity reached 123 U/g. The $pH_C$ 7.5 strategy made recombinant plasmid more stable and therefore allowed easier expression of PAL recombinant plasmid, which increased PAL production. It was indicated that the new approach (controlled-pH strategy) obtained in this work possessed a high potential for the industrial production of PAL, especially in the biosynthesis of L-phenylalanine.

Effects of Abscisic acid and Temperature on the Anthocyanin Accumulation in Seedlings of Arabidopsis thaliana

  • Song Ju-Yeun;Kim Tae-Yun;Hong Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1093-1102
    • /
    • 2005
  • Effects of abscisic acid(ABA) and temperature on the anthocyanin accumulation and phenylalanine ammonia Iyase(PAL) activity were investigated in seedlings of Arabidopsis thaliana. In time course study, exogenous application of ABA $(50-1000\;{\mu}M)$ led to a noticeable increase in anthocyanin pigments which persisted over the following 5 days. Anthocyanins increased in concert with the chlorophyll loss. The activity of PAL, a key enzyme in the phenylpropanoid pathway, increased on exposure to ABA and reached maximum on the 4th day, This result shows that anthocyanin synthesis and PAL activity have a close physiological relationships. In the effects of temperatures ($10^{\circ}C,\;17^{\circ}C,\;25^{\circ}C$and $30^{\circ}C$) on anthocyanin accumulation and PAL activity in seedlings, a moderate-low temperatures ($17^{\circ}C$) enhanced both anthocyanin content and PAL activity, whereas elevated temperatures ($30^{\circ}C$) showed low levels of anthocyanin and PAL activity, suggesting a correlation between temperature-induced anthocyanin synthesis and the accumulation of PAL mRNA. Simultaneous application of ABA with temperatures Induced higher anthocyanin synthesis and PAL activity in seedlings than ABA or temperature stress alone. Moderate-low temperature with ABA exposure elicited the maximal induction of anthocyanin synthesis and PAL activity. Therefore, ABA treatment significantly increased thermotolerance in .A. thalinan seedlings. Ethephon and ABA showed similar mode of action in physiological effects on anthocyanin accumulation and PAL activity. Our data support that anthocyanins may be protective in preventing damage caused by environmental stresses and play an important role in the acquisition of freezing tolerance.