DOI QR코드

DOI QR Code

Immunological Relationships among Fungal and Plant Phenylalanine Ammonia-lyases and Bacterial Histidine Ammonia-lyase

진균과 식물의 Phenylalanine Ammonia-lyase 그리고 세균의 Histidine Ammonia-lyase 간의 면역학적 관계 분석

  • Hyun, Min-Woo (Department of Microbiology and Institute of Basic Sciences, Dankook University) ;
  • Yun, Yeo-Hong (Department of Microbiology and Institute of Basic Sciences, Dankook University) ;
  • Suh, Dong-Yeon (Department of Microbiology and Institute of Basic Sciences, Dankook University) ;
  • Han, Ji-Hae (Department of Microbiology and Institute of Basic Sciences, Dankook University) ;
  • Kim, Seong-Hwan (Department of Microbiology and Institute of Basic Sciences, Dankook University)
  • 현민우 (단국대학교 미생물학과 및 기초과학연구소) ;
  • 윤여홍 (단국대학교 미생물학과 및 기초과학연구소) ;
  • 서동연 (단국대학교 미생물학과 및 기초과학연구소) ;
  • 한지혜 (단국대학교 미생물학과 및 기초과학연구소) ;
  • 김성환 (단국대학교 미생물학과 및 기초과학연구소)
  • Received : 2011.11.01
  • Accepted : 2011.11.07
  • Published : 2011.12.01

Abstract

Phenylalanine ammonia-lyase (PAL) from the maize pathogen Ustilago maydis was analysed immunologically to obtain insights into the structural relationships between plant PAL and fungal PAL and between PAL and histidine ammonia-lyase (HAL). Cross-reactivity was found among all the PAL proteins from different species tested, using antibodies raised against both plant and fungal PALs. Both anti-Alfalfa and anti-popular PAL antibodies strongly recognized plant PALs but only weakly recognized fungal PALs. Antibodies raised against U. maydis PAL only weakly recognized the Rhodotorula glutinis yeast PAL. The anti-U. maydis PAL antibodies showed low affinity for the plant PALs but they bound strongly to Pseudomonas bacterial HAL. Significant cross-reactivity between the two plant PAL antibodies and the bacterial HAL was also observed. Both the anti-Ustilago PAL and the anti-poplar PAL antibodies displayed similar enzyme inhibition patterns, including moderate inhibition of bacterial HAL activity. However, the bacterial HAL antibody inhibited only Ustilago PAL. The PAL and HAL antibodies tested showed no inhibition against yeast PAL. This is first report on the immunological relationships between PAL and HAL.

진균의 phenylalanine ammonia-lyase(PAL)와 식물의 PAL간 그리고 PAL과 histidine ammonia-lyase (HAL)간의 구조적 특성 관계에 대한 이해를 얻기 위해 옥수수병원균인 깜부기균(Ustilago maydis)의 PAL에 대한 면역학적 분석을 수행하였다. 진균의 PAL 항체와 식물의 PAL 항체를 이용하여 분석하였을 때 실험한 모든 종의 PAL 간에 교차반응이 나타났다. 알팔파 PAL 항체와 포플라 PAL 항체 모두 식물 PAL은 강하게 인식하였으나 진균의 PAL은 약하게 인식하였다. U. maydis PAL은 Rhodotorula glutinis 효모의 PAL만 약하게 인식하였다. U. maydis PAL은 식물의 PAL에 대해서 낮은 친화성을 보였으나 Pseudomonas 세균의 HAL에 대해서는 강한친화성을 보였다. 2종의 식물 PAL 항체들 또한 Pseudomonas 세균의 HAL에 대해 강한 친화성을 보였다. 진균과 식물의 PAL 항체는 PAL 효소의 활성 저해를 나타냈으며 세균의 HAL 효소의 활성에 대해서도 중도적 저해를 나타냈다. 세균의 HAL 항체는 식물과 효모와 Ustilago PAL 중에 Ustilago PAL 활성만 저해하였다. 식물의 PAL과 진균의 PAL 모두 효모의 PAL 활성은 저해하지 못했다. 본 연구는 PAL과 HAL간에 면역학적 관계가 있음을 처음으로 보고한다.

Acknowledgement

Supported by : 한국연구재단

References

  1. Armstrong, E. G. and Feigelson, M. 1980. Effects of hypophysectomy and triiodothyronine on de novo biosynthesis, catalytic activity, and estrogen induction of rat liver histidase. J. Biol. Chem. 255:7199-7203.
  2. Asubel, F. M., Brent, B., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1995. Current protocols in molecular biology. John Wiley Inc. New York.
  3. Bernards, M. A. and Ellis, B. E. 1991. Phenylalanine ammonialyase from tomato cell cultures inoculated with Verticilliumalboatrum. Plant Physiol. 97:1494-1500. https://doi.org/10.1104/pp.97.4.1494
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Calabrese, J. C. Jordan, D. B., Boodhoo, A., Sariaslani, S and Vannelli, T. 2004. Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochem. 43:11403-11416. https://doi.org/10.1021/bi049053+
  6. Consevage, M. W. and Phillips, A. T. 1985. Presence and quantity of dehydroalanine in histidine ammonia-lyase from Pseudomonas putida. Biochem. 24:301-308. https://doi.org/10.1021/bi00323a010
  7. Feigelson, M. 1973. Multihormonal regulation of hepatic histidase during postnatal development. Enzyme 15:169-197.
  8. Hahlbrock, K. and Scheel, D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:347-369. https://doi.org/10.1146/annurev.pp.40.060189.002023
  9. Hanson, K.R. and Havir, E.A. 1970. L-Phenylalanine ammonia-lyase. IV. Evidence that the prosthetic group contains a dehydroalanyl residue and mechanism of action. Arch. Biochem. Biophys. 141:1-17. https://doi.org/10.1016/0003-9861(70)90100-1
  10. Hodgins, D. S. 1971. Yeast phenylalanine ammonia-lyase: purification, properties, and the identification of catalytically essential dehydroalanine. J. Biol. Chem. 246:2977-2985.
  11. Hernandez, D. and Phillips, A. T. 1994. Ser-143 is an essential active site residue in histidine ammonia-lyase of Pseudomonas putida. Biochem. Biophys. Res. Comm. 201:1443-1438.
  12. Hernandez, D., Stroh, J. G. and Phillips, A. T. 1993. Identification of $Ser^{143}$ as the site of modification on the active site of histidine ammonia-lyase. Arch. Biochem. Biophys. 307:126-132. https://doi.org/10.1006/abbi.1993.1570
  13. Holloman, W. K. and Dekker, C. A. 1971. Control by cesium and intermediates of the citric acid cycle of extracellular ribonuclease and other enzymes involved in the assimilation of nitrogen. Proc. Natl. Acad. Sci. 68:2241-2245. https://doi.org/10.1073/pnas.68.9.2241
  14. Hyun, M. W., Yun, Y. H., Kim, J. Y. and Kim, S. H. 2011. Fungal and plant phenylalanine Ammonia-lyase. Mycobiol. (in press).
  15. Jones, D. H. 1984. Phenylalanine ammonia-lyase: regulation of its induction and its role in plant development. Phytochem. 23:1349-1359. https://doi.org/10.1016/S0031-9422(00)80465-3
  16. Kamel, M. Y. and Maksoud, S. A. 1978. Co-factor requirements and factors affecting L-histidine ammonia-lyase activity in Vicia faba. Z. Pflanzenphysiol. Bd. 88:255-262. https://doi.org/10.1016/S0044-328X(78)80247-5
  17. Kim, S. H., Kronstad, J. W. and Ellis, B. E. 1996. Purification and characterization of phenylanine ammonia-lyase from Ustilago maydis. Phytochem. 34:351-357.
  18. Koukol, J. and Conn, E. E. 1961. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem. 236:2692-2698.
  19. Lamartiniere, C. A. 1979. Neonatal estrogen treatment alters sexual differentiation of hepatic histidase. Endocrinol. 105:1031-1035. https://doi.org/10.1210/endo-105-4-1031
  20. Langer, M., Reck, G., Reed, J. and Retey, J. 1994. Identification of serine-143 as the most likely precursor of dehydroalanine in the active site of histidine ammonia-lyase. A study of the overexpressed enzyme by site-directed mutagenesis. Biochem. 33:6462-6467. https://doi.org/10.1021/bi00187a011
  21. McKegney, G. R., Butland, S. L., Theilmann, D. and Ellis, B. E. 1996. Expression of poplar phenylalanine ammonia-lyase in insect cell cultures. Phytochem. 41:1259-1263. https://doi.org/10.1016/0031-9422(95)00677-X
  22. Pilbak, S., Tomin, A., Retey, J. and Poppe L. 2006. The essential tyrosine-containing loop conformation and the role of the Cterminal multi-helix region in eukaryotic phenylalanine ammonialyases. FEBS J. 273:1004-1019. https://doi.org/10.1111/j.1742-4658.2006.05127.x
  23. Polkinghorne, M. A. and Hynes, M. J. 1982. L-Histidine utilization in Aspergillus nidulans. J. Bacteriol. :931-940.
  24. Rechler, M. M. and Tabor, H. 1969. The purification and characterization of L-histidine ammonia-lyase. J. Biol. Chem. 244:551-559.
  25. Ruis, H. and Kindl, H. 1970. Distribution of ammonia-lyases in organelles of castor bean endosperm. Hoppe-Seyler's Physiol. Chem. 351:1425-1427.
  26. Ruis, H. and Kindl, H. 1971. Formation of ${\alpha},{\beta}-unsaturated$ carboxylic acids from amino acids in plant peroxisomes. Phytochem. 10:2627-2631. https://doi.org/10.1016/S0031-9422(00)97254-6
  27. Schomburg, D. and Salzmann, M. 1990. Class 4: Lyases, Phenylalanine ammonia-lyase in Enzyme Handbook 1, Springer-Verlag, Berlin, Heidelberg.
  28. Schuster, B. and Retey, J. 1994. Serine-202 is the putative precursor of the active site dehydroalanine of phenylalanine ammonialyase. Site-directed mutagenesis studies on the enzyme from parsley (Petroselinum crispum L.) FEBS Lett. 349:2562-254.
  29. Schuster, B. and Retey, J. 1995. The mechanism of action of phenylalanine ammonia-lyase: the role of prosthetic dehydroalanine. Proc. Natl. Acad. Sci. USA 92:8433-8437. https://doi.org/10.1073/pnas.92.18.8433
  30. Taylor, R.G. and McInnes, R.R. 1994. Site-directed mutagenesis of conserved serines in rat histidase. J. Biol. Chem. 269:27473-27477.
  31. Wu, P.-C., Kroening, T. A., White, P. J. and Kendrick, K .E. 1992. Histidine ammonia-lyase from Streptomyces griseus. Gene 115:19-25. https://doi.org/10.1016/0378-1119(92)90535-W
  32. Young, D. and Davis, R. W. 1983. Polymerase II genes: Isolation with antibody probes. Science 222:778-782. https://doi.org/10.1126/science.6356359