• Title/Summary/Keyword: PA6 Composite

Search Result 59, Processing Time 0.022 seconds

Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2

  • Zhang, Qing;Zhang, Xingyuan;Zhang, Wencheng;Pan, Jian;Liu, Ling;Zhang, Haitao;Zhao, Dong;Li, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3348-3354
    • /
    • 2011
  • Oleanolic acid (OA) as template molecule, polyamide-6 (PA6) as basement membrane and poly(styrene-comaleic acid) (PSMA) were used to prepare PA6/PSMA-OA molecularly imprinted composite membranes by phase inversion method in supercritical $CO_2$ ($ScCO_2$). The template molecule (OA), [poly(styrene-co-maleic anhydride) (PSMAH), PSMA, molecularly imprinted membranes (MIMs) imprinting OA and MIMs after elution were all characterized by Fourier transform infrared spectroscopy (FTIR). The conditions that were the mass ratio between PSMA and OA from 3:1 to 8:1, temperature of $ScCO_2$ from $35^{\circ}C$ to $50^{\circ}C$ and pressure of $ScCO_2$ 12 MPa to 17 MPa were studied. It was obtained the largest adsorption rate and purity of OA after adsorption of the resultant MIMs, 50.41% and 96.15% respectively. After using PA6 film and non-woven fabrics as basement membrane respectively, it was found that smaller aperture of PA6 was used as basement membrane, a higher adsorption rate and a higher purity of OA after adsorption of the MIMs were obtained, and so were the stability and reproducibility of the resultant MIMs. After template molecules being removed, the MIMs had effective selectivity hydrogen bonding to separately bind in the binary components to the template molecules-oleanolic acid.

Comparative Evaluation of Manufacturing Properties of Carbon Fiber Reinforced Thermoplastic Polymer (CFRTP) according to Nanofiller Type (나노필러 종류에 따른 열가소성 탄소 섬유강화 복합재료의 제작 물성 비교 평가)

  • Jun Ha Park;Soon Ho Yoon;Minkook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.186-189
    • /
    • 2024
  • This study compared and evaluated the mechanical properties of carbon fiber reinforced thermoplastic polymer (CFRTP) mixed with nanofillers. After mixing various nanofillers such as Multi-wall carbon nanotube (MWCNT), Silicon oxide, Core shell rubber, and Aramid nanofiber with Polyamide 6 (PA6) resin, this is used as a matrix to create a carbon fiber reinforced composite material (CFRP) was manufactured and its physical properties were measured. Depending on the type and mixing ratio of nanofiller, tensile strength, inter-laminar shear strength (ILSS), and Izod impact strength were measured. In terms of tensile strength and impact strength, the highest values were obtained when mixing core shell rubber, however the ILSS was optimal when mixing less than 1 wt.% of silicon oxide.

A Study on the Development of a Hybrid Fiber Reinforced Composite for a Type 4 CNG Vessel (CNG용 Type 4 하이브리드 섬유 복합재 용기 개발에 대한 연구)

  • Cho, Sung-min;Cho, Min-sik;Jung, Geunsung;Lee, Sun-kyu;Lee, Seung-kuk;Park, Ki-dong;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-103
    • /
    • 2017
  • The objective of this study is to develop and commercialize an on-board fuel storage system for CNG vehicles. A type 4 vessel is made of resin-impregnated continuous filament windings on a polyamide (PA6) liner. In particular, this study localized the PA6 liner's fabrication and development. To analyze the filament winding, a specimen test was performed, and the results were verified values obtained using finite element analysis. In this study, the filament winding and fibers were optimized for a 207 bar composite cylinder in a compressed natural gas vehicle.

Hydrogen Permeation of SiC-CeO2 Composite Membrane by Dip-coating Process

  • Park, Jihye;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.485-488
    • /
    • 2013
  • A SiC-$CeO_2$ composite membrane was successfully fabricated using an ally-hydridopolycarbosilane (AHPCS) binder and treated by dip-coating at 60 times with a $CeO_2$ sol solution. The dip-coated SiC membrane was calcined at 773 K and then sintered at 1173 K under an air atmosphere. The coated membrane was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and a BET surface analysis. The difference in permeation performance between $H_2$ and CO gases was measured by varying the temperature. The permeation flux of $H_2$ on the SiC membrane with layered $CeO_2$ was obtained as $8.45{\times}10^{-6}\;mol/m^2sPa$ at room temperature. The CO permeation flux was $2.64{\times}10^{-6}\;mol/m^2sPa$ at room temperature. The reaction enthalpy (${\Delta}H^{\circ}$) for the hydrogen permeation process was calculated as -7.82 J/mol by Arrhenius plots.

Effect of Interface on the Properties of Polyamide 6/Carbon Nanotube Nanocomposites Prepared by In-situ Anionic Ring-opening Polymerization

  • Min, Jin Hong;Huh, Mongyoung;Yun, Seok Il
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.375-381
    • /
    • 2019
  • Multiwalled carbon nanotubes (MWCNTs) are covalently functionalized with isocyanates by directly reacting commercial hydroxyl functionalized MWCNTs with excess 4,4'-methylenebis (phenyl isocyanate) (MDI) and hexamethylene diiosocyanate (HDI). HDI-modified MWCNTs results in a higher surface isocyanate density than MDI-modified MWCNTs. Anionic ring-opening polymerization of ε-caprolactam is conducted using a sodium caprolactam initiator in combination with a di-functional hexamethylene-1,6-dicarbamoylcaprolactam activator in the presence of isocyanate functionalized MWCNTs. This polymerization proceeds in a highly efficient manner at relatively low reaction temperature (150℃) and short reaction times (10 min). During the polymerization, the isocyanate functionalized MWCNTs act not only as reinforcing fillers but also as second activators. Nanocomposites with HDI modified MWCNTs exhibit higher reinforcement and faster isothermal crystallization than MDI modified MWCNTs. The results show that PA6 chains grow more effectively from HDI modified MWCNT surface than from MDI modified MWCNT surface, resulting in stronger interaction between PA6 and MWCNTs.

Experimental Study on Pressures Changes on Infilling Soil and Geotextile Drain in Circular Acrylic Tube Structure (토사 주입과 배수 시 원형 아크릴 튜브 구조체의 압력 변화에 대한 실험적 연구)

  • Kim, Hyeong-Joo;Won, Myoung-Soo;Lee, Jang-Baek;Park, Tae-Woong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.86-94
    • /
    • 2015
  • A series of injection and drainage test were conducted on an circular acrylic tube to investigate the pressure generated by the accumulated fill materials inside a circular acrylic tube structure. The acrylic tube was filled by means of gravity filling with a slurry material having an average water content of 700%. The water head during the filling process was 1.8m and the bottom pressure during initial filling was 20.18kPa. The recorded stress at the sides of the acrylic tube was 17.89kPa during the filling process and was reduced to 13.58kPa during the leaving process. Continuous drainage of the acrylic tube has greatly influenced the stresses around the tube structure. As the water is gradually allowed to overflow, the generated pressure at the topmost pressure sensor of the tube was reduced further to 2.17kPa. Eventually, the initially liquid state slurry material transforms into plastic state after water has dissipated and substantial soil particles are deposited in the acrylic tube. The final water content of the deposited silt inside the acrylic tube after the test was 42%. It was found that the state of stresses(geo-static earth pressures) in the acrylic tube was anisotropic rather than isotropic.

Preparation and Characterization of Polyamide Thin Film Composite Reverse Osmosis Membranes Using Hydrophilic Treated Microporous Supports (친수성 처리된 다공성 지지체를 이용한 폴리아마이드 박막 역삼투 복합막 제조 및 특성 분석)

  • Son, Seung Hee;Jegal, Jonggeon
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2014
  • It is very well known that the conventional polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membranes have excellent permselective properties, but their chlorine tolerance is not good enough. In this study, to improve such chlorine tolerance, microporous membranes containing hydrophilic functional groups such as -COOH were used as a support to prepare PA TFC RO membranes, employing the conventional interfacial polymerization method. Meta-phenylene diamine (MPD) and 2,6-diamine toluene (2,6-DAT) were used as diamine monomers and tri-mesoyl chloride (TMC) as an acid monomer. The membranes prepared were characterized using various instrumental analytical methods and permeation test set-up. The flux obtained from the membranes prepared so was more than $1.0m^3/m^2day$ at 800 psi of operating pressure, while the salt rejection was over 99.0%. The chlorine tolerance of them was also found to be better than that of the membrane prepared by using conventional polysulfone support without hydrophilic functional groups.

Development of a Type 4 Composite Cylinder for Self-contained Breathing Apparatus (공기호흡기용 타입 4 복합재료 용기 개발)

  • Cho, Sung-min;Kim, Da-eun;Seong, Hye-jin;Ko, Young-kyu;Kim, Hong-chul;Lee, Kang-ok;Jo, Min-sik;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.1-6
    • /
    • 2019
  • Aluminum liners used in cylinders are hazardous for human health. In this study, we use a plastic PA liner inside cylinders to solve this problem. Plastic PA liners are widely used in the manufacturing industry in the production of food and beverage containers. We covered the aluminum boss with a plastic liner material and wound the composite fibers over the liner material. To reinforce the dome area, we used low strength / high elongation plastic liner. To predict the performance of the developed product, we conducted structural analyses utilizing the 3D laminated solid element. We verified the soundness of the product by testing the prototype.

Separation of Aqueous Ethanol Solution Using a PAA-PAN Composite Membrane Through Pervaporation (PAA-PAN 복합막을 이용한 에탄올 수용액의 투과증발 분리)

  • 원장묵;하백현;최호상
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.182-187
    • /
    • 1996
  • Hydrophilic poly(acrylonitrile) [PAN] membrane with good molecular weight cut-off characteristics were prepared by using the phase inversion method. Permeability and molecular weight cut-off of the membranes were measured through the ultrafiltration test. On the surface of the PAN support membranes, poly(acrylic acid) [PAA] was deposited by dip-coating. The water permeability of the PAN support membrane had $0.17~31\textrm{mm}^3/m^{2} \cdot s \cdot Pa$, the molecular weight cut-off 42, 000~150, 000. The transport characteristics of the prepared composite membranes were significantly affected by the variation of the support membrane mophology. The permeability of the composite membrane was decreased with increasing molecular weight cut-off of the support membrane, and the separation factor was slightly changed depending on the feed concentration.

  • PDF

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.