• Title/Summary/Keyword: PA 필름

Search Result 55, Processing Time 0.022 seconds

Status of Packaging Materials for Frozen Foods and Analysis of Temperature Changes inside Packaging Materials during Frozen Process (냉동식품용 포장재 현황 및 냉동 과정 중 포장재 내부 온도 변화에 관한 연구)

  • Yoo, Seungwoo;Kwon, Sangwoo;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.1
    • /
    • pp.11-16
    • /
    • 2019
  • This study analyzed various packaging materials and types for frozen foods and the effects of packaging materials on temperature changes during frozen process. Pouches with different film thickness were prepared and placed in an IQF freezer, then the temperature inside pouches measured using a deep thermometer. The most common types of primary packaging for frozen foods in the market was plastic pouches with polyethylene or polyamide/polyethylene multilayer materials. The temperature change inside of packaging was delayed with film thickness increased. As the size of packaged food increased, the temperature change inside the food was slowed down. In addition, the pouches with air inside took more time to reach $-30^{\circ}C$ compared to pouches with less air during frozen process. This study provides information on packaging materials and types for frozen foods and preliminary data of temperature change by different types of packaging.

산소 플라즈마로 표면 개질 된 Si-DLC 필름의 젖음각 거동

  • Lee, Jin-U;Mun, Myeong-Un;Lee, Gwang-Ryeol;Jeon, Yu-Taek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.327-327
    • /
    • 2011
  • DLC 필름은 바이오 적합성, 특히 생체 적합성이 뛰어나기 때문에 바이오 코팅분야에서 널리 이용된다. 많은 연구 결과에 의하면 세포와 장기 등이 바이오 재료 표면에 적절히 접합할 수 있도록, 재료 표면을 산소나 질소를 이용하여 플라즈마 처리로 초친수성 표면으로 개질하고 있다. 하지만, 시간이 지남에 따라서 친수성 표면은 점차 재료의 표면 처리 전의 성질인 소수성을 회복하게 된다. D실제 생체에 적용하기 위해서 이러한 시효 효과에 대한 정확한 평가가 이루어져야 한다. 따라서 산소와 질소 플라즈마 처리 후의 친수성 성질이 소수성 성질로 변해가는 거동을 조사하는게 중요하다. 13.56 MHz의 plasma assisted chemical vapor deposition (PACVD) 법을 이용하여 DLC와 Si-DLC를 500 ${\mu}m$ 두께의 P-type 실리콘(100) 기판에 증착하였다. 박막 증착 과정에 사용한 기체는 벤젠과 희석된 silane이 사용되었다(SiH4/H2=10:90). 박막 증착은 -400 V의 바이어스 전압을 인가하였으며, 이때 증착 압력은 1.33Pa으로 일정하게 유지하여, 두께 $0.55{\pm}0.01{\mu}m$로 증착하였다. X-ray Photoelectron Spectroscopy (XPS) 법을 이용하여 실리콘 함량을 측정하였으며, 증착 된 Si-DLC의 실리콘 함량은 0~4.88 at. %였다. 이후에 질소와 산소 플라즈마를 이용하여 챔버 압력을 1.33 Pa로 유지하여, -400 V의 바이어스 전압을 인가하여 10분간 표면 처리를 하였다. 표면 처리된 DLC와 Si-DLC 표면 위에서의 물방울(water droplet)의 젖음각을 20일간 측정하였다. 플라즈마 표면 처리 된 모든 시편에서 초기 젖음각은 $10{\sim}20^{\circ}$의 친수성 성질을 보였지만, 점차 젖음각이 상승하여 산소 플라즈마 처리 된 Si-DLC를 제외하고는 5일이 지나면서 거의 소수성 표면으로 회복되었다. 산소 플라즈마 처리 된 Si-DLC의 경우, 젖음 각 측정 기간(20일) 동안 $15^{\circ}$ 미만의 친수성 성질을 유지하였다.

  • PDF

Effects of Film Packaging and Gas Composition on the Distribution and Quality of Ginseng Sprouts (새싹인삼의 필름포장과 가스조성이 품질특성에 미치는 영향)

  • Chang, Eun Ha;Lee, Ji Hyun;Choi, Ji Weon;Shin, Il Sheob;Hong, Yoon Pyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.152-166
    • /
    • 2020
  • Background: Ginsenosides, which have various physiological activities, are known to be abundant in the leaves and roots of ginseng. Ginseng sprouts can be used as a fresh vegetable and roots, stems, and leaves of ginseng can be consumed. This study aimed to investigate the effect of carbon dioxide treatment and the modified atmosphere (MA) packaging method in suppressing quality deterioration during the distribution of ginseng sprouts. Methods and Results: Ginseng sprouts were packed using Styrofoam, barrier film + non gas treatment, barrier film + gas treatment, 15 ㎛ polyamide (PA) double film + non gas treatment, 15 ㎛ PA double film + gas treatment, 25 ㎛ PA film + non gas treatment, or 25 ㎛ PA film + gas treatment. Quality parameters including gas composition, relative humidity, chlorophyll SPAD (Soil Plant Analysis Development) value, firmness, and rate of quality loss in ginseng sprouts were monitored at the following temperatures: 20℃, and 10℃. Ginseng sprouts packaged with 25 ㎛ PA film showed loss in quality because of wilting owing to low relative humidity within the film. Chlorophyll and firmness did not differ between film and gas treatments. The time point at which the combined loss from softening and decay owing to fungal, and bacterial infection and wilt reached 20% was considered the limit of distribution. At 20℃, the packaging not included in the 20% distribution loss rate limit or up to 7 days was 15 ㎛ PA double film + gas treatment. At 10℃, the packaging not included in the 20% distribution loss rate limit for up to 18 days were barrier film + gas treatment and 15 ㎛ PA double film + gas treatment. Conclusions: The film packaging suitable for the distribution of ginseng sprouts was found to be the barrier film and PA film with low gas permeability and maintaining hygroscopicity at 95% relative humidity. To prevent the loss in quality of ginseng sprouts, gas treatment (8% of O2 and 18% of CO2) in the film was found to be more suitable than no gas treatment for inhibition of decay.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

Quality and Shelf-Life of Vacuum Packed RTE (Ready-To-Eat) Hamburg Steak Depending on the Oxygen Permeability of Packaging Material and the Storage Temperature (포장재의 산소투과도와 저장온도에 따른 즉석섭취형 햄버그스테이크의 품질 및 저장성)

  • Lim, Ji Hoon;Lee, Sung Ki;Chung, Seung Hee;Lee, Keun Taik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.95-102
    • /
    • 2016
  • This study investigated the effects of the oxygen permeability of vacuum packaging film and the storage temperature on the quality and shelf life of Hamburg steaks during storage for 14 days. Control samples (C) were packaged in a polyamide/polyethylene (PA/PE) film and stored at $5^{\circ}C$. Treatment samples were either packaged in an ethylene vinyl alcohol/polyethylene (EVOH/PE) copolymer film and stored at $5^{\circ}C$ (T1), and in a PA/PE film and stored at $-18^{\circ}C$ (T2). The initial total plate count (TPC) was 3.6 log cfu/g. In T1 samples, TPC and Brochothrix thermosphacta counts were increased, similar to those in C samples, whereas Pseudomonas spp. counts were significantly lower than those in C samples during storage. Over the storage period, the volatile basic nitrogen values increased most rapidly in C samples, followed by T1 and then T2 samples. The values of thiobarbituric acid reactive substances steadily increased in all samples during storage. The colour parameters were not significantly different among the samples during storage. T1 samples maintained sensory qualities in flavour and off-odour parameters for two days longer than C samples did. At day 12, T2 samples were evaluated as being below the marketability score of 5.0 for texture. In conclusion, using high oxygen barrier films like EVOH/PE copolymer for packaging Hamburg steaks could extend the sensory qualities in view of flavour and off-odour during chilled storage. However, frozen storage at $-18^{\circ}C$ is recommended when the storage period is extended beyond 14 days at $5^{\circ}C$.

Characteristics of Edible Films Based with Various Cultivars of Sweet Potato Starch (고구마 전분을 이용한 가식성 필름의 제조와 특성)

  • Lee, Jung-Ju;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.834-842
    • /
    • 2000
  • In order to investigate the characteristics of various sweet potato starches, gelatinization temperatures, solution viscosity of starch separated from two cultivars of the dry type sweet potatoes(Yulmi and Gunmi), one cultivar of moist type sweet potato(Jinmi), and one cultivar of purple colored variety(Jami) were compared, and properties of the edible films prepared with the starches were determined. Under a differential scanning colorimetry(DSC), initial temperatures for starch gelatinization of the dry type sweet potatoes (Yulmi and Gunmi) were higher than that of the moist type sweet potato (Jinmi), and that of Jami was close to those of the dry type ones. The sweet potato starch solutions tested by a cone and plate viscometer, showed peudoplastic characteristics. The moist type sweet potato was the most viscous followed by Jami, Yulmi, and Gunmi among the tested starch solutions. Total color difference of the edible films prepared with different cultivars of sweet potatoes showed appreciable differences between cultivars, caused by differences in Hunterb values. Water Vapor Permeability (WVP) of sweet potato starch films also showed significant differences between cultivars. Films prepared with the dry type sweet potato, Gunmi, showed the lowest WVP value of $0.83{\times}10^{-9}\;g\;{\cdot}\;m/m^{2}\;{\cdot}\;s\;{\cdot}\;Pa$, followed by Jami, Yulmi, and Jinmi. Water solubility of the films did not show any significant differences between cultivars. Tensile strength of the dry type sweet potato and Jami, which ranged 14.18-18.75 MPa, were higher than that of the moist type sweet potato, which was 4.66 MPa. Elongation values of the films, which were 5-6%, indicated that sweet potato starch films were not so elastic.

  • PDF

Effect of Packaging Materials and Methods on the Storage Quality of Dried Persimmon (포장재 및 포장방법이 저장곶감의 품질에 미치는 영향)

  • Park, Hyung-Woo;Koh, Ha-Young;Park, Moo-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.321-325
    • /
    • 1989
  • Storage quality dried persimmons was evaluated by 5 scale scoring hedonic sensory analysis in various packaging methods and materials. Dried persimmons were deteriorated within 1 months of storage in polyethyene(PE, 0.08mm) and 1.5-2.5 months in nylon(PA/PE, 0.1mm) packages at room temperature, But those were kept good quality for 5 months of storage in PA/PE package and for 8 months in $CO_2$ or $N_2$ gas filled polyester/aluminum/casteded polypropylene(PET/Al./CPP, 0.1mm) package at $5^{\circ}C$. Dried persimmon had the best quality in water content of 37% and at humidity 75% and its shelf-life was noticialy prolonged by low temperature.

  • PDF

A Study of Magnification of Cardiac Size and Cardiothoracic Ratio on Chest Posteroanterior Projection in Digital Radiography System (디지털방사선 환경에서 흉부 후.전방향 검사 시 심장과 심흉비 확대에 관한 연구)

  • Joo, Young-Cheol;Lim, Cheong-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.195-196
    • /
    • 2014
  • 현재 디지털방사선 환경으로 변화하고 있는 추세에 과거 필름-스크린 방식에서 사용되던 흉부 후 전 방향 검사 시 초점 영상 수신부 간의 거리가 디지털방식의 장비에도 여전히 적용되고 있다. 이에 본 연구에서는 3개의 DR장비에서 각 영상수용체의 제조특성을 고려하였을 때 실제 심장 및 심흉비의 확대정도에 대해 알아보고, 임상에서 DR 장비를 이용한 Chest PA 검사 시 심장 및 심흉비의 확대도에 대한 정보를 제공하고자 한다.

  • PDF

Recent research trends of post-harvest technology for king oyster mushroom (Pleurotus eryngii) (큰느타리버섯 수확후 관리기술 최근 연구 동향)

  • Choi, Ji-Weon;Yoon, YoeJin;Lee, Ji-Hyun;Kim, Chang-Kug;Hong, Yoon-Pyo;Shin, Il Sheob
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.131-139
    • /
    • 2018
  • The king oyster mushroom (Pleurotus eryngii) is widely consumed because of its flavor, texture, and its functional properties such as antioxidant activity and prebiotic effects. However, long-term product storage and transportation (e.g., export) are difficult because of its limited durability. The shelf-life of king oyster mushroom is affected by environmental factors such as temperature, humidity, gas composition, and ventilation, which may affect sensory characteristics including respiration rate, texture, moisture, flavor, color, and pH. The major problems regarding storage of mushrooms are browning, flavor changes, and softening. To address these problems, novel preservation techniques were developed, and more durable variants were bred. Different drying methods, gamma irradiation, chitosan coating, modified atmosphere (MA) packaging, and controlled atmosphere (CA) storage were evaluated in order to extend the shelf-life of king oyster mushrooms. Freeze drying showed better results for the preservation of mushrooms than other drying methods. Irradiation with 1 kGy was more effective for extending mushroom shelf-life than higher doses. The preservative performance of chitosan-based films was improved by combining the compound with other hydrocolloids, such as oil, protocatechuic acid, and wax. The CA storage conditions recommended for king oyster mushrooms are 5kPa $O_2$ and 10 to 15kPa $CO_2$ at temperatures below $10^{\circ}C$. Active MA packaging with microperforated PP film was also effective for maintaining quality during storage.

Preparation of Humidity Sensor Using Novel Photocurable Sulfonated Polyimide Polyelectrolyte and their Properties (광가교성 Sulfonated Polyimide 전해질 고분자를 이용한 습도센서의 제조 및 특성 분석)

  • Lim, Dong-In;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.486-493
    • /
    • 2012
  • Photocurable sulfonated polyimide (SPI) polyelectrolyte containing chalcone group was prepared and fabricated on an alumina electrode pretreated with chalcone-containing silane-coupling agent. SPI films with bis(tetramethyl)ammonium 2,2'-benzidinedisulfonate ($Me_4N$-BDS)/4,4'-diaminochalcone (DAC)/pyromellitic dianhydride (PA)= 90/10/100 possessed very linear response(Y = -0.04528X+7.69446, $R^2=0.99675$) and showed resistance changing from 4.48 to $2.1k{\Omega}$ between 20 and 95 %RH. The response time for absorption and desorption measurements between 33 and 94 %RH% was about 79 s, which affirmed the high efficiency of crosslinked SPI film for rapid detection of humidity. A negative temperature coefficient showing $-0.49%RH/^{\circ}C$ was found and proper temperature compensation should be considered in future applications. Moreover, pretreatment of the substrates with chalcone-containing silane-coupling agent was performed to improve the water durability and the stability of the humidity sensors at a high humidity and a high temperature and long-term stability for 480 h. The crosslinked SPI films anchored to electrode substrate could be a promising material for the fabrication of efficient humidity sensors with superior characteristics compared to the commercially available sensors.