• Title/Summary/Keyword: P91 steel

Search Result 35, Processing Time 0.025 seconds

Schemes to enhance the integrity of P91 steel reheat steam pipe of a high-temperature thermal plant (고온 화력 P91강 재열증기배관의 건전성 제고 방안)

  • Lee, Hyeong-Yeon;Lee, Jewhan;Choi, Hyun-Sun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.74-83
    • /
    • 2020
  • A number of so-called 'Type IV' cracking was reported to occur at the welded joints of the P91 steel or P92 steel reheat steam piping systems in Korean supercritical thermal power plants. The reheat steam piping systems are subjected to severe thermal and pressure loading conditions of coolant higher than 570℃ and 4MPa, respectively. In this study, piping analyses and design evaluations were conducted for the piping system of a specific thermal plant in Korea and suggestions were made how structural integrity could be improved so that type IV cracks at the welded joints could be prevented. Integrity evaluations were conducted as per ASME B31.1 code with implicit consideration of creep effects which was used in original design of the piping system and as per nuclear-grade RCC-MRx code with explicit consideration of creep effects. Comparisons were made between the evaluation results from the two design rules. Another approach with modification or reduction of the redundant supports in the piping systems was investigated as a tool to mitigate thermal stresses which should essentially contribute to prevention of Type IV cracking without major modification of the existing piping systems. In addition, a post weld heat treatment method and repair weld method which could improve integrity of the welded joint of P91 steel were investigated.

An Empirical Approach to Analyze Creep Rupture Behavior of P91 Steel

  • Aslam, Muhammad Junaid;Gur, Cemil Hakan
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.255-263
    • /
    • 2021
  • P91 steel has been a highly researched material because of its applicability for high-temperature applications. Considerable efforts have been made to produce experimental creep data and develop models for creep life prediction. As creep tests are expensive and difficult to conduct, it is vital to develop authenticated empirical methods from experimental results that can be utilized for better understanding of creep behavior and can be incorporated into computational models for reliable prediction of creep life. In this research, a series of creep rupture tests are performed on the P91 specimens within a stress range of 155 MPa to 200 MPa and temperature range of 640 ℃ (913 K) to 675 ℃ (948 K). The microstructure, hardness, and fracture surfaces of the specimens are investigated. To analyze the results of the creep rupture tests at a macro level, a parameter called creep work density is derived. Then, the relationships between various creep parameters such as strain, strain rate, time to rupture, creep damage tolerance factor, and creep work density are investigated, and various empirical equations are obtained.

Effects of hardness values on the creep rupture strength in a Mod. 9Cr1Mo Steel (Mod. 9Cr1Mo 강의 크리프 강도에 미치는 경도의 영향)

  • Lee, Yeon-Su;Yu, Seok-Hyeon;Gong, Byeong-Uk;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.637-642
    • /
    • 2003
  • The Modified 9Cr-1Mo steel identified as T91, P91 and F91 in the ASME specification has been widely used for the construction of modern power plants. The available data on the influence of process parameters during manufacturing and fabrication on its properties are not sufficient. In this study, the influence of various thermal cycles on the hardness and the creep rupture strength was analyzed in the base metal and the weldments made in tube and pipe of a Mod.9Cr-1Mo steel. The low hardness, 155Hv, showed low creep rupture strength below the allowable stresses of T91 base metal in the ASME specification. This low value was attributed to the fully recovered dislocation structure and the weakening of precipitation hardening associated with the abnormal thermal cycles.

  • PDF

Estimation of Flexural Strength of Hollow Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 중공형 콘크리트 충전 강관말뚝의 휨강도 산정)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.91-100
    • /
    • 2019
  • Hollow prestressed concrete-filled steel tube (HCFT) piles, which combines PHC piles inside thin-wall steel tubes, were developed to increase the flexural strength of the pile with respect to the lateral load. Since P-M curves are needed for evaluating the structural safety of piles when applying HCFT piles to fields, equations for plotting P-M curves of HCFT piles in limit states were proposed. When the yield strength is applied to the steel tube and PC steel bar of HCFT piles, the proposed equations significantly underestimated the flexural strength of HCFT piles. Unlike the flexural strength test results, the proposed equations also provide greater flexural strengths for 12 mm thick steel pipe piles with the same diameter than for HCFT piles. However, when the ultimate strengths are used instead of the yield strengths for the steel tube and PC steel bar, the proposed equations provide the flexural strengths very close to the flexural strength test results.

Enhancing Effects of NaHSO3 on Corrosion of T91 Steel

  • Wu, Tangqing;Tan, Yao;Wang, Jun;Xu, Song;Liu, Lanlan;Feng, Chao;Yin, Fucheng
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.368-378
    • /
    • 2020
  • In the paper, corrosion behavior of T91 steel in different concentrations of NaHSO3 solution was studied in combination with scanning electron microscope (SEM) and electrochemical measurements. The results showed that the steel exhibited active anodic dissolution characteristics in the solution, and NaHSO3 concentration affected both cathodic and anodic behaviors. The steel surface was covered by intact corrosion products in the solutions, but the compactness and mechanical properties of the corrosion products degraded with the increase of NaHSO3 concentration. In low-concentration NaHSO3 solution the steel tended to undergo uniform corrosion with slight corrosion pits, but its corrosion mode gradually transited to localized corrosion as the NaHSO3 concentration increased. The mechanical property degradation of the corrosion products caused by sulfur compounds and the pH decrease of the solution are the important factors to accelerating its corrosion process.

Synergistic Inhibition of Carbon Steel Corrosion by Inhibitor-Blends in Chloride - Containing Simulated Cooling Water

  • Shaban, Abdul;Felhosi, Ilona;Vastag, Gyongyi
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.91-99
    • /
    • 2017
  • The objective of this work was to develop efficient synergistic inhibitor combinations comprising sodium nitrite ($NaNO_2$) and an inhibitor-blend code named (SN-50), keeping in view of their application in industrial cooling water systems. The electrochemical characteristics of the carbon steel working electrode in simulated cooling water (SCW), without and with the addition of different combinations of the inhibitors, were investigated using electrochemical impedance spectroscopy (EIS), open circuit potential (OCP). The electrode surface changes were followed by visual characterization methods. It was demonstrated in this study that all the combinations of the inhibitors exhibited synergistic benefit and higher inhibition efficiencies than did either of the individual inhibitors. The addition of SN-50 inhibitor to the SCW shifted the OCP to more anodic values and increased the polarization resistance ($R_p$) values of carbon steel at all applied concentrations. The higher the applied sodium nitrite concentration (in the protection concentration range), the higher the obtained $R_p$ values and the inhibition efficiency improved by increasing the inhibitor concentration.

Validation of applicability of induction bending process to P91 piping of prototype Gen-IV sodium-cooled fast reactor (PGSFR)

  • Tae-Won Na;Nak-Hyun Kim;Chang-Gyu Park;Jong-Bum Kim;Il-Kwon Oh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3571-3580
    • /
    • 2023
  • The application of the induction bending process to pipe systems in various industrial fields is increasing. Recently, efforts have also been made to apply this bending process to nuclear power plants because it can innovatively reduce welded parts of the curved pipes, such as elbows. However, there have been no cases of the application of induction bending to the piping of nuclear power plants. In this study, the applicability of the P91 induction bending piping for the sodium-cooled fast reactor PGSFR was validated through high temperature low cycle fatigue tests and creep tests using P91 induction bending pipe specimens. The tests confirmed that the materials sufficiently satisfied the fatigue life and the creep rupture life requirements for P91 steel at 550 ℃ in the ASME B&PV Code, Sec. III, Div. 5. The results show that the effects of heating and bending by the induction bending process on the material properties were not significant and the induction bending process could be applicable to piping system of PGSFR well.

A Study on the Development of a Ultra-Strength Precast Concrete Bearing Concrete Bearing Plate (초고강도 ($\acute{f}_{C91}$= 950kg/$\textrm{cm}^2$) P.C Bearing Plate 개발에 관한 연구)

  • 소현창;정병욱;김재우;문성규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.643-648
    • /
    • 1997
  • P.C Bearing Plate method, corresponding to the existing steel plate build-up method, is developed by the very first in domestic and is applied to the foundation in the HYUNDAI building at Kang-Nam. P. C Bearing Plate produced in ourself P.C plant can stand against vertical load of 7,000ton obtaining allowable force of soil. It is possible to minmize cost expediting, do site assembling and omit unnecessary excavation work by plant prefabrication of foundation member. The purpose of this paper is to study the optimum mixing design of Ultra-high strength concrete ($\acute{f}_{C91}$= 950kg/$\textrm{cm}^2$), crack control through measuring the heat of hydration, mock up test for the optimum curing method. As mentioned above, developing the Ultra-high strength Precast Concrete Bearing Plate set up successfully in the site foundation work of the HYUNDAI Building at Kang-Nam.

  • PDF

Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

  • Bhat, J. Ishwara;Alva, Vijaya D.P.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

A Study on Fatigue Design for Welded Joint of STS301L (STS301L 용접종류별 이음재의 피로설계에 관한 연구)

  • Baek, Seung-Yeb
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.86-91
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. For fatigue design of gas welded joints such as fillet and plug type joint, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. And also, the influence of the geometrical parameters of gas welded joints on stress distribution and fatigue strength must be evaluated. the ${\Delta}P-N_f$ curves were obtained by fatigue tests. Using these results, ${\Delta}P-N_f$ curves were rearranged in the ${\Delta}{\sigma}-N_f$ relation with the maximum stress at the edge of fillet welded joint.