• 제목/요약/키워드: P38 MAPK signaling pathway

검색결과 155건 처리시간 0.026초

Anti-Inflammatory Activity of Oligomeric Proanthocyanidins Via Inhibition of NF-κB and MAPK in LPS-Stimulated MAC-T Cells

  • Ma, Xiao;Wang, Ruihong;Yu, Shitian;Lu, Guicong;Yu, Yongxiong;Jiang, Caode
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1458-1466
    • /
    • 2020
  • Oligomeric proanthocyanidins (OPCs), classified as condensed tannins, have significant antioxidation, anti-inflammation and anti-cancer effects. This study was performed to investigate the anti-inflammatory effects of OPCs and the mechanism underlying these effects in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cells (MAC-T). Real-time PCR and ELISA assays indicated that OPC treatment at 1, 3 and 5 ㎍/ml significantly reduced the mRNA and protein, respectively, of oxidant indicators cyclooxygenase-2 (COX-2) (p < 0.05) and inducible nitric oxide synthase (iNOS) (p < 0.01) as well as inflammation cytokines interleukin (IL)-6 (p < 0.01), IL-1β (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.05) in LPS-induced MAC-T cells. Moreover, OPCs downregulated LPS-induced phosphorylation of p65 and inhibitor of nuclear factor kappa B (NF-κB) (IκB) in the NF-κB signaling pathway (p < 0.01), and they inhibited p65 translocation from the cytoplasm to the nucleus as revealed by immunofluorescence test and western blot. Additionally, OPCs decreased phosphorylation of p38, extracellular signal regulated kinase and c-jun NH2-terminal kinase in the MAPK signaling pathway (p < 0.01). In conclusion, the anti-inflammatory and antioxidant activities of OPCs involve NF-κB and MAPK signaling pathways, thus inhibiting expression of pro-inflammatory factors and oxidation indicators. These findings provide novel experimental evidence for the further practical application of OPCs in prevention and treatment of bovine mastitis.

Anti-inflammatory Effect of Leaves Extracts from Aralia cordata through Inhibition of NF-κB and MAPKs Signaling in LPS-stimulated RAW264.7 Cells

  • Ji, Eo Hyun;Kim, Da Som;Sim, Su Jin;Park, Gwang Hun;Song, Jeong Ho;Jeong, Jin Boo;Kim, Nahyun
    • 한국자원식물학회지
    • /
    • 제31권6호
    • /
    • pp.634-640
    • /
    • 2018
  • Aralia cordata (A. cordata), which belongs to Araliaceae, is a perennial herb widely distributed in East Asia. We evaluated the anti-inflammatory effect of stems (AC-S), roots (AC-R) and leaves (AC-L) extracted with 100% methanol of A. cordata and elucidated the potential signaling pathway in LPS-stimulated RAW264.7 cells. The AC-L showed a strong anti-inflammatory activity through inhibition of NO production. AC-L dose-dependently inhibited NO production by suppressing iNOS, COX-2 and $IL-{\beta}$ expression in LPS-stimulated RAW264.7 cells. AC-L inhibited the degradation and phosphorylation of $I{\kappa}B-{\alpha}$, which donated to the inhibition of p65 nuclear accumulation and $NF-{\kappa}B$ activation. Furthermore, AC-L suppressed the phosphorylation of ERK1/2 and p38. These results suggested that AC-L may utilize anti-inflammatory activity by blocking $NF-{\kappa}B$ and MAPK signaling pathway and indicated that the AC-L can be used as a natural anti-inflammatory drugs.

마우스 대식세포 RAW264.7 세포에서 MAPK와 NF-κB 경로를 통한 quercetin의 염증 반응 저해 활성 (Quercetin Inhibits Inflammation Responses via MAPKs and NF-κB Signaling Pathways in LPS-stimulated RAW264.7 Cells)

  • 원우영;김정태;김근호;황지영;정정욱;김종식
    • 생명과학회지
    • /
    • 제32권11호
    • /
    • pp.899-907
    • /
    • 2022
  • Quercetin은 과일과 채소에 풍부한 플라보노이드 중의 하나로써, 항산화, 항염증, 항암, 항바이러스 활성 등 다양한 약리학적 활성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 in vitro 모델에서 quercetin의 항염증 활성과 작용기전을 연구하였다. Quercetin은 LPS로 자극된 RAW264.7에서 세포 생존율에 영향 없이 NO 생산을 농도 의존적으로 저해하였고, iNOS와 COX-2 단백질의 발현을 억제하였다. 게다가, quercetin은 LPS로 유도된 p38, JNK, ERK의 인산화를 농도 의존적으로 저해하였고, NF-κB p65 단백질과 억제자인 IκBα 단백질의 인산화를 저해하였다. 이러한 결과는 quercetin의 항염증 활성이 MAPK 경로와 NF-κB를 조절함으로써 이루어진다는 것을 시사한다. Quercetin에 의해 4종류의 친 염증성 cytokine (CSF2, IL-1β, IL-6, TNF-α)의 발현 변화를 정량적 real-time PCR 방법으로 확인한 결과, 모든 cytokine 유전자의 발현이 감소됨을 확인하였다. 종합적으로, 본 연구결과는 플라보노이드 quercetin이 RAW264.7 세포에서 LPS로 유도된 염증반응을 MAPK 경로와 NF-κB경로를 통해 억제하고 친염증성 cytokine 유전자의 발현을 억제함으 로써 조절한다는 것을 제시한다.

Involvement of PI3K/AKT and MAPK Pathways for TNF-α Production in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis

  • Yang, Jung-Bo;Quan, Juan-Hua;Kim, Ye-Eun;Rhee, Yun-Ee;Kang, Byung-Hyun;Choi, In-Wook;Cha, Guang-Ho;Yuk, Jae-Min;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.371-377
    • /
    • 2015
  • Trichomonas vaginalis induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in $TNF-{\alpha}$ production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased $TNF-{\alpha}$ production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, $TNF-{\alpha}$ production was significantly decreased compared to the control; however, $TNF-{\alpha}$ reduction patterns were different depending on the type of PI3K/MAPK inhibitors. $TNF-{\alpha}$ production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of $TNF-{\alpha}$ production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.

The protective effect of Prunella vulgaris ethanol extract against vascular inflammation in TNF-α-stimulated human aortic smooth muscle cells

  • Park, Sun Haeng;Koo, Hyun Jung;Sung, Yoon Young;Kim, Ho Kyoung
    • BMB Reports
    • /
    • 제46권7호
    • /
    • pp.352-357
    • /
    • 2013
  • Atherosclerosis, which manifests as acute coronary syndrome, stroke, and peripheral arterial diseases, is a chronic inflammatory disease of the arterial wall. Prunella vulgaris, a perennial herb with a worldwide distribution, has been used as a traditional medicine in inflammatory disease. Here, we investigated the effects of P. vulgaris ethanol extract on TNF-${\alpha}$-induced inflammatory responses in human aortic smooth muscle cells (HASMCs). We found that P. vulgaris ethanol extract inhibited adhesion of monocyte/macrophage-like THP-1 cells to activated HASMCs. It also decreased expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin and ROS, No production in TNF-${\alpha}$-induced HASMCs and reduced NF-${\kappa}B$ activation. Furthermore, P. vulgaris extract suppressed TNF-${\alpha}$-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK). These results demonstrate that P. vulgaris possesses anti-inflammatory properties and can regulate TNF-${\alpha}$-induced expression of adhesion molecules by inhibiting the p38 MAPK/ERK signaling pathway.

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

담배 연기에 의한 Muc5ac 유전자 발현에 관여하는 세포 내 신호 전달 경로로서의 ERK1/2와 p38 MAPK (Muc5ac Gene Expression Induced by Cigarette Smoke is Mediated Via a Pathway Involving ERK1/2 and p38 MAPK)

  • 김용현;윤형규;김치홍;안중현;권순석;김영균;김관형;문화식;박성학;송정섭;조경숙
    • Tuberculosis and Respiratory Diseases
    • /
    • 제58권6호
    • /
    • pp.590-599
    • /
    • 2005
  • 연구배경 : 만성폐쇄성폐질환에서 나타나는 기도점액의 과다분비는 이 질환의 중요한 병리학적 소견이며 호흡곤란 등 환자의 증상을 악화시키는 요인 중의 하나이다. 기도 점액을 구성하는 여러 성분 중 Muc 유전자에 의해 만들어지는 당 단백이 흡연에 의해 생성이 증가하는데 이에 관여하는 세포 내 신호전달 과정에 대하여 확실히 밝혀진 바가 없다. 저자는 Muc 유전자 중 인체의 기도에 가장 많이 분비되는 Muc5ac 점액 생성을 담당하는 Muc5ac 유전자의 발현이 흡연에 의하여 증가하는데 관여하는 세포 내 신호전달 과정을 알아보고자 하였다. 재료 및 방법 : 사람 폐선암 세포주인 A549 세포를 배양하여 Muc5ac 유전자의 promotor를 luciferase reporter plasmid를 사용하여 세포 내에 transfection시키고 5% 담배연기 추출물로 자극하여 배양하였다. 또 세포 내 신호전달에 관여하는 표피성장인자 수용체 kinase의 억제제인 AG1478, mitogen-activated protein kinase kinase(MAPKK) 억제제인 PD98059, p38 mitogen-activated protein kinase 억제제인 SB203580으로 각각 전 처치 후 역시 5% 담배연기 추출물로 자극 배양하였다. 배양된 세포에서 단백질을 추출하여 luciferase 분석을 통하여 Muc5ac promoter 활성도를 측정하고 Western blot을 이용하여 표피성장인자 수용체와 mitogen-activated protein kinase (MAPK)인 extracellular signalrelated kinase (ERK)1/2, p38 MAPK, c-Jun N-terminal kinase (JNK)의 발현을 확인하였다. 또 세포에서 RNA를 추출한 후 Muc5ac primer를 이용하여 역전사효소 중합연쇄반응을 수행하여 Muc5ac mRNA 발현을 관찰하였다. 결 과 : 1. Muc5ac promoter를 삽입한 A549 세포를 5% 담배연기 추출물로 자극하였을 때 의의 있게 luciferase 활성도가 증가하였고(P<0.001) 자극하는 시간이 3시간이었을 때 luciferase 활성도가 최고치를 보였다(P<0.01). 또 담배연기 추출물 자극은 표피성장인자 수용체를 인산화시켰으며 인산화는 AG1478과 PD98059에 의하여 억제되었다. 2. AG1478 혹은 PD98059로 전 처치 후 5% 담배연기 추출물로 자극한 경우 5% 담배연기 추출물 단독으로 자극한 것에 비하여 유의하게 lucifearse 활성도가 억제되었고 (P<0.01) 세 가지 종류의 MAPK 중 ERK1/2와 p38 MAPK의 인산화는 관찰되었으나 JNK의 인산화는 관찰되지 않았다. 역전사효소 중합연쇄반응을 이용하여 관찰한 Muc5ac mRNA 발현은 담배연기 추출물에 의해 증가되었고 PD98059와 AG1478에 의하여 역시 억제되었다. 3. 담배연기 추출물에 의하여 인산화 된 ERK1/2는 PD98059에 의하여 인산화가 감소하였고 p38 MAPK의 인산화는 PD98059와 SB203580에 의하여 감소하였으며 이 두 가지 억제제는 모두 luciferase 활성도를 유의하게 억제시켰다(P<0.0001). 결 론 : 담배연기 추출물은 Muc5ac 유전자의 발현을 증가시켜 기도 내 점액 분비를 증가시키며 이는 표피성장인자 수용체를 매개로 ERK1/2와 p38 MAPK를 경유하여 세포 내 신호전달이 이루어진다고 생각된다. 따라서 점액 유전자 활성화를 매개하는 신호전달 과정을 차단하는 약제나 방법이 개발된다면 과도한 점액분비를 치료할 수 있을 것으로 생각한다.

Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells

  • Bak, Min Ji;Truong, Van-Long;Ko, Se-Yeon;Nguyen, Xuan Ngan Giang;Jun, Mira;Hong, Soon-Gi;Lee, Jong-Won;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.423-430
    • /
    • 2016
  • Background: The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. Methods: Red ginseng oil (RGO) was extracted using a supercritical $CO_2$ extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. Results: The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0] tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. Conclusion: RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.

N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Park, Jun-Ho;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.200-206
    • /
    • 2014
  • N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.

Comparison of Anti-Inflammation Effects of Specimens Before and After the Oil Extraction of Raphanus sativus L. Seed in RAW 264.7 Macrophage Activated by LPS

  • Sunyoung Park;Dahyun Mun;Gunwoo Lee;Youngsun Kwon;Hye-yeon Kang;Jeom-Yong Kim
    • 셀메드
    • /
    • 제13권6호
    • /
    • pp.7.1-7.6
    • /
    • 2023
  • Raphanus sativus L. has been reported to have anti-inflammatory and anti-tumor activity. However, the anti-inflammatory effect and mechanism of action of the Raphanus sativus L. seeds (RSS) with or without oil are still unknown. This study was undertaken to investigate the in-vitro anti-inflammatory effect with or without oil in the RSS on RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Results showed the suppressed LPS-induced secretion of pro-inflammatory mediators such as nitric oxide (NO), inflammatory cytokine (IL-6, TNF-α). Additionally, a decrease in protein expression of iNOS was observed, but nuclear translocation of NF-κB p65 was not inhibited. To elucidate the underlying mechanism of the anti-inflammatory effect of RSS, the involvement of mitogen-activated protein kinase (MAPK) signaling pathways was examined. We also found that RSS blocked LPS-induced phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK) signaling but did not affect the phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2. These results suggest that RSS may have potential as an anti-inflammatory agent through the inhibition of LPS-induced inflammatory cytokine production via regulation of the JNK pathway.