• Title/Summary/Keyword: P253R mutation

Search Result 2, Processing Time 0.015 seconds

A Case of Apert Syndrome with a P253R Mutation on FGFR2 Exon VIII (FGFR2 유전자의 8번째 엑손부위의 P253R 돌연변이로 진단된 Apert 증후군 1례)

  • Lee, Young-Jin;Ko, Jung-Min;Park, Seong-Shik;Cheon, Chong-Kun
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.151-155
    • /
    • 2010
  • Apert syndrome is a rare congenital anomaly characterized by craniofacial malformations and severe symmetrical syndactyly of fingers and toes. This syndrome is caused by a genetic mutation; the S253 mutation is common, though the P253R mutation is not as frequent. Common symptoms include skeletal malformations, poor joint mobility, eye and ear problems, cleft palate, and orthodontic and other dental problems. We report a case of an infant with the common morphological features of Apert syndrome. Interestingly, she was found to have the P253R mutation in FGFR2 exon VIII, which has been less commonly observed in Korea. A brief review of the literature is included.

Generation of a transgenic mouse model to study cranial suture development; Apert syndrome (두개봉합 발육 연구를 위한 형질변환 쥐의 개발 : 어퍼트 신드롬)

  • Lee, Kee-Joon;Ratisoontorn, Chootima;Baik, Hyoung-Seon;Park, Young-Chel;Park, Kwang-Kyun;Nah, Hyun-Duck
    • The korean journal of orthodontics
    • /
    • v.33 no.6 s.101
    • /
    • pp.485-497
    • /
    • 2003
  • The form and function of the craniofacial structure critically depend on genetic information. With recent advances in the molecular technology, genes that are important for normal growth and morphogenesis of the craniofacial skeleton are being rapidly uncovered, shaping up modem craniofacial biology. One of them is fibroblast growth factor receptor 2 (FGFR2). Specific point mutations in the. FGFR2 gene have been linked to Apert syndrome, which is characterized by premature closure of cranial sutures and craniofacial anomalies as well as limb deformities. To study pathogenic mechanisms underlying craniosynostosis phenotype of Apert syndrome, we used a transgenic approach; an FGFR2 minigene construct containing an Apert mutation (a point mutation that substitute proline at the position 253 to arginine; P253R) was introduced into fertilized mouse germ cells by DNA microinjection. The injected cells were then allowed to develop into transgenic mice. We used a bone-specific promoter (a DNA fragment from the type I collagen gene) to confine the expression of mutant FGFR2 gene to the bone tissue, and asked whether expression of mutant FGFR2 in bone is sufficient to cause the craniosynostosis phenotype in mice. Initial characterization of these mice shows prematurely closed cranial sutures with facial deformities expected from Apert patients. We also demonstrate that the transgene produces mutant FGFR2 protein with increased functional activities. Having this useful mouse model, we now can ask questions regarding the role of FGFR2 in normal and abnormal development of cranial bones and sutures.