• Title/Summary/Keyword: P19 cells

Search Result 826, Processing Time 0.041 seconds

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

Co-Expression of Putative Cancer Stem Cell Markers, CD133 and Nestin, in Skin Tumors

  • Sabet, Mehrdad Nasrollahzadeh;Rakhshan, Azadeh;Erfani, Elham;Madjd, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8161-8169
    • /
    • 2014
  • Background: Cancer stem cells (CSC) are populations of cells responsible for tumor initiation, progression and therapeutic resistance in many cancers. In the present study, we aimed to investigate the expression pattern and clinical significance of two CSC markers, CD133 and Nestin, in a series of skin tumors. Materials and Methods: One hundred and thirteen paraffin blocks from skin cancers including 16 (14%) cases of melanoma, 37 (33%) of squamous cell cancer (SCC) and 60 (53%) of basal cell cancer (BCC) were collected and assembled in a tissue microarray (TMA). The samples were immunohistochemically examined for the expression of CD133 and Nestin. Expression of these markers was also correlated with clinicopathological parameters. Results: A significant difference was observed in the expression of CD133 and Nestin in melanomas, SCC and BCC (p value=0.001). Furthermore, the level of expression was significantly higher in the melanomas compared to the SCC and BCC tumors. Expression of CD133 in the melanoma was significantly associated with increased tumor invasiveness (p value=0.05), a higher rate of metastasis (p value=0.04) and the presence of ulceration (p value=0.02). Increased expression of Nestin was observed in metastatic melanoma (p value=0.04), while no statistically significant correlation was found with other clinicopathological parameters including Breslow thickness, Clark level and ulceration. Conclusions: Elevated expression levels of CD133 and Nestin in the melanomas are associated with advanced disease, with more aggressive and metastatic skin tumors. Therefore, these markers could be potential therapeutic targets for malignant tumors of the skin.

LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis

  • Guo, Feng;Tang, Chengchun;Huang, Bo;Gu, Lifei;Zhou, Jun;Mo, Zongyang;Liu, Chang;Liu, Yuqing
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.122-133
    • /
    • 2022
  • The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.

Optimization of Citric Acid Production by Immobilized Cells of Novel Yeast Isolates

  • Hesham, Abd El-Latif;Mostafa, Yasser S.;AlSharqi, Laila Essa Omar
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.122-132
    • /
    • 2020
  • Citric acid is a commercially valuable organic acid widely used in food, pharmaceutical, and beverage industries. In this study, 260 yeast strains were isolated from soil, bread, juices, and fruits wastes and preliminarily screened using bromocresol green agar plates for their ability to produce organic acids. Overall, 251 yeast isolates showed positive results, with yellow halos surrounding the colonies. Citric acid production by 20 promising isolates was evaluated using both free and immobilized cell techniques. Results showed that citric acid production by immobilized cells (30-40 g/L) was greater than that of freely suspended cells (8-19 g/L). Of the 20 isolates, two (KKU-L42 and KKU-L53) were selected for further analysis based on their citric acid production levels. Immobilized KKU-L42 cells had a higher citric acid production rate (62.5%), while immobilized KKU-L53 cells showed an ~52.2% increase in citric acid production compared with free cells. The two isolates were accurately identified by amplification and sequence analysis of the 26S rRNA gene D1/D2 domain, with GenBank-based sequence comparison confirming that isolates KKU-L42 and KKU-L53 were Candida tropicalis and Pichia kluyveri, respectively. Several factors, including fermentation period, pH, temperature, and carbon and nitrogen source, were optimized for enhanced production of citric acid by both isolates. Maximum production was achieved at fermentation period of 5 days at pH 5.0 with glucose as a carbon source by both isolates. The optimum incubation temperature for citric acid production by C. tropicalis was 32 ℃, with NH4Cl the best nitrogen source, while maximum citric acid by P. kluyveri was observed at 27 ℃ with (NH4)2 SO4 as the nitrogen source. Citric acid production was maintained for about four repeated batches over a period of 20 days. Our results suggest that apple and banana wastes are potential sources of novel yeast strains; C. tropicalis and P. kluyveri which could be used for commercial citric acid production.

Shikonin Induced Apoptosis and Inhibited Angiogenesis on HSE Cells

  • Lee Soo-Jin;Kim Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1363-1369
    • /
    • 2005
  • Previously we have shown that shikonin has strong anti-tumor activities via inducing apoptosis and suppressing metastasis on LLC cells in vivo and in vitro. Here we have investigated anti-angiogenic potential of shikonin and its possible mechanism of action in HSE cells. Shikonin inhibited the proliferation of HSE cells in a concentration-dependent manner. It was shown that this proliferation inhibition was caused by apoptosis induced by shikonin via BrdU incorporation and Western blotting analysis. Shikonin treatment was caused that decrease of activation of caspases and cleavage of PARP. And shikonin induced that the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Moreover, shikonin showed anti-angiogenic activities inhibiting tube-like formation of HSE cells in vitro and vascular formation of LLC cells in vivo. These findings suggest that shikonin may a possible candidate not only anti-metastatic agent but also anti-angiogenic agent.

Anti-proliferative Effects of Bee Venom through Induction of Bax and Cdk Inhibitor p21WAF1/CIP1 in Human Lung Carcinoma Cells (Bax 및 Cdk inhibitor p21WAF1/CIP1 발현 증가에 의한 bee venom의 A549 인체폐암세포 성장억제)

  • Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.167-173
    • /
    • 2005
  • To investigate the possible molecular mechanism (s) of bee venom as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Bee venom treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Bee venom down-regulated the levels of anti-apoptotic genes such as Bcl-2 and Bcl-XS/L, however, the levels of Bax, a pro-apoptotic gene, were up-regulated. Bee venom treatment induced not only tumor suppressor p53 but also cyclin-dependent kinase inhibitor p21WAF1/CIP1 expression in a dose-dependent manner. Furthermore, bee venom treatment induced the down-regulation of telomerase reverse transcriptase mRNA and telomeric repeat binding factor expression of A549 cells, however, the levels of telomerase-associated protein-1 and c-myc were not affected. Taken together, these findings suggest that bee venom-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and bee venom may have therapeutic potential in human lung cancer.

Effect of pHs on Morphological and Cultural Characteristics of Alkalophilic Coryneform Bacteria TU-19 (호알칼리성 Coryneform Bacteria TU-19의 형태적, 배양적 특성에 미치는 pH효과)

  • Choi, Myoung-Chul;Yang, Jae-Sub;Hwang, Cher-Won;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.337-341
    • /
    • 1998
  • The morphological and cultural characteristics of alkalophilic Coryneform bacteria TU-19 were investigated at various pHs. This bacterium showed normal growth pattern at $pH\;9.0{\sim}10.0$, but the cell growth was completely inhibited at extreme pH (12.0 or more). Interestingly, at pH 8.0 the morphology of the bacterial cells seems to form convoluted filaments during the exponential growth phase while at pH 10.0, the optimal pH for the growth of this organism, the bacteria grew with variable paired or single forms, and straight rods during growth stages. Growing in alkaline media $(pH\;9.0{\sim}11.0)$, it adjusted the pH of the culture media to around pH 8.5 by itself.

  • PDF

Involvement of TGF-β1 Signaling in Cardiomyocyte Differentiation from P19CL6 Cells

  • Lim, Joong-Yeon;Kim, Won Ho;Kim, Joon;Park, Sang Ick
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.431-436
    • /
    • 2007
  • Stem cell-based therapy is being considered as an alternative treatment for cardiomyopathy. Hence understanding the basic molecular mechanisms of cardiomyocyte differentiation is important. Besides BMP or Wnt family proteins, $TGF-{\beta}$ family members are thought to play a role in cardiac development and differentiation. Although $TGF-{\beta}$ has been reported to induce cardiac differentiation in embryonic stem cells, the differential role of $TGF-{\beta}$ isoforms has not been elucidated. In this study, employing the DMSO-induced cardiomyocyte differentiation system using P19CL6 mouse embryonic teratocarcinoma stem cells, we investigated the $TGF-{\beta}$-induced signaling pathway in cardiomyocyte differentiation. $TGF-{\beta}1$, but not the other two isoforms of $TGF-{\beta}$, was induced at the mRNA and protein level at an early stage of differentiation, and Smad2 phosphorylation increased in parallel with $TGF-{\beta}1$ induction. Inhibition of $TGF-{\beta}1$ activity with $TGF-{\beta}1$-specific neutralizing antibody reduced cell cycle arrest as well as expression of the CDK inhibitor $p21^{WAF1}$. The antibody also inhibited induction of the cardiac transcription factor Nkx2.5. Taken together, these results suggest that $TGF-{\beta}1$ is involved in cardiomyocyte differentiation by regulating cell cycle progression and cardiac gene expression in an autocrine or paracrine manner.

Immunohistochemical Assessment of E-cadherin and β-catenin in the Histological Differentiations of Oral Squamous Cell Carcinoma

  • Zaid, Khaled Waleed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8847-8853
    • /
    • 2014
  • The aim of this study was to establish the expression and localization of E-cadherin and ${\beta}$-catenin in oral squamous cell carcinomas (OSCC) so that we could correlate the findings with prognostic-relevant histopathological variables. E-cadherin and ${\beta}$-catenin expression in normal oral epithelia and in oral squamous cell carcinomas was examined immunohistochemically, and associations with histopathological differentiation and prognosis were then analyzed in 33 patients who had been operated on for OSCC. E-cadherin expression was found in (82%) of the squamous cells of well differentiated OSCC, (61%) of moderately differentiated and (39%) of poorly differentiated. E-cadherin expression was significantly associated with histological grade (p=0.000). No nuclear staining was detected. In (19.5%) of the cells E-cadherin localized in the cytoplasm, with no correlation to the histological grade (p=0.106). ${\beta}$-Catenin expression was found in 87% of the squamous cells of well differentiated OSCC, 67% of moderately differentiated and 43% of poorly differentiated, the expression was significantly associated with histological grade (p=0.000). the nuclear ${\beta}$-Catenin expression appeared in 3.3% of the cells and it was correlated to the histological grade (p=0.000). In (23.5%) of the cells ${\beta}$-Catenin localized in the cytoplasm, with correlation to the histological grade (p=0.002). According to this study the expression of ${\beta}$-catenin and E-cadherin were independent prognostic factors for histological grade. E-cadherin was closely linked to ${\beta}$-catenin expression in OSCC (p=0.000) and to tumor differentiation. That reflects a structural association and the role of both in tumor progression.

Immune Reconstitution of CD4+T Cells after Allogeneic Hematopoietic Stem Cell Transplantation and its Correlation with Invasive Fungal Infection in Patients with Hematological Malignancies

  • Peng, Xin-Guo;Dong, Yan;Zhang, Ting-Ting;Wang, Kai;Ma, Yin-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3137-3140
    • /
    • 2015
  • Objective: To explore the immune reconstitution of $CD4^+T$ cells after allogeneic hematopoietic stem cell transplantation (Allo-HSCT) and its relationship with invasive fungal infection (IFI) in patients with hematological malignancies. Materials and Methods: Forty-seven patients with hematological malignancies undergoing Allo-HSCT in Binzhou Medical University Hospital from February, 2010 to October, 2014 were selected. At 1, 2 and 3 months after transplantation, the immune subpopulations and concentration of cytokines were assessed respectively using flow cytometry (FCM) and enzyme linked immunosorbent assay (ELISA). The incidence of IFI after transplantation and its correlation with immune reconstitution of $CD4^+T$ cells were investigated. Results: The number of $CD4^+T$ cells and immune subpopulations increased progressively after transplantation as time went on, but the subpopulation cell count 3 months after transplantation was still significantly lower than in the control group (p<0.01). In comparison to the control group, the levels of interleukin-6 (IL-6) and IL-10 after transplantation rose evidently (p<0.01), while that of transforming growth factor-${beta}$ (TGF-${beta}$) was decreased (p<0.01). There was no statistically significant difference level of interferon-${\gamma}$ (IFN-${\gamma}$) (p>0.05). The incidence of IFI was 19.2% (9/47), and multivariate logistic regression revealed that IFI might be related to Th17 cell count (p<0.05), instead of Th1, Th2 and Treg cell counts as well as IL-6, IL-10, TGF-${beta}$ and IFN-${\gamma}$ levels (p>0.05). Conclusions: After Allo-HSCT, the immune reconstitution of $CD4^+T$ cells is delayed and Th17 cell count decreases obviously, which may be related to occurrence of IFI.