• Title/Summary/Keyword: P.E. film

Search Result 511, Processing Time 0.028 seconds

A Study on Characteristic of the 14/50/50 PLZT Thin Film for DRAM Capacitor (고집적 DRAM소자용 14/50/50 PLZT 박막의 특성에 관한 연구)

  • 박용범;장낙원;백동수;마석범;최형욱;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.118-121
    • /
    • 1999
  • PLZT thin films were fabricated with different energy density by pulsed laser deposition. PLZT films deposited on Pt/Ti/SiO$_2$/Sr substrate. This PLZT thin films of 5000$\AA$ thickness were crystallized at $600^{\circ}C$, 200mTorr $O_2$ pressure for 2 J/$\textrm{cm}^2$ laser energy density. 14/50/50 PLZT thin film showed a maximum dielectric constant value of $\varepsilon$$_{r}$=1289.9 P-E hysteresis loop of 14/ 50/50 PLZT thin film was slim ferroelectric. Leakage current density of 14/50/50 PLZT thin film was 10/ sup -7/=A/$\textrm{cm}^2$.>.

  • PDF

High Work Function of AZO Fhin Films as Insertion Layer between TCO and p-layer and Its Application of Solar Cells

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.426.1-426.1
    • /
    • 2016
  • We report high work function Aluminum doped zinc oxide (AZO) films as insertion layer as a function of O2 flow rate between transparent conducting oxides (TCO) and hydrogenated amorphous silicon oxide (a-SiOx:H) layer to improve open circuit voltage (Voc) and fill factor (FF) for high efficiency thin film solar cell. However, amorphous silicon (a-Si:H) solar cells exhibit poor fill factors due to a Schottky barrier like impedance at the interface between a-SiOx:H windows and TCO. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiOx:H. In this study, we report on the silicon thin film solar cell by using as insertion layer of O2 reactive AZO films between TCO and p-type a-SiOx:H. Significant efficiency enhancement was demonstrated by using high work-function layers (4.95 eV at O2=2 sccm) for engineering the work function at the key interfaces to raise FF as well as Voc. Therefore, we can be obtained the conversion efficiency of 7 % at 13mA/cm2 of the current density (Jsc) and 63.35 % of FF.

  • PDF

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.

Effects of Blended Poly(3-hexylthiophene) and 6,13-bis(triisopropylsilylethynyl) pentacene Organic Semiconductors on the Photoresponse Characteristics of Thin-Film Transistors

  • Hyunji Shin;Hyeonju Lee;Bokyung Kim;Xue Zhang;Jin-Hyuk Bae;Jaehoon Park
    • Korean Journal of Metals and Materials
    • /
    • v.60 no.3
    • /
    • pp.198-205
    • /
    • 2022
  • In this study, we demonstrate high-performance optical wavelength-selective organic thin-film transistors (TFTs) that incorporate heterogeneous organic semiconductor materials, poly(3-hexylthiophene) (P3HT) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene). The electrical characteristics of the fabricated transistors were analyzed in the dark to determine how the P3HT:TIPS-pentacene ratio of the semiconductor affected the performance of the transistor. Specifically, the P3HT:TIPS-pentacene weight ratio was varied (1:0, 1:0.25, 1:0.5, 1:0.75, 1:1, and 0:1) by blending 1 wt% P3HT dissolved in chloroform, and 1 wt% TIPS-pentacene dissolved in anisole. The UV-visible light absorbance characteristics of the films containing the P3HT, TIPS-pentacene, and P3HT:TIPS-pentacene blends were analyzed. Monochromatic light at wavelengths of 515 and 450 nm was used to clarify the influence of irradiation on the electrical characteristics of the TFTs. The results confirmed that the TFT containing P3HT:TIPS-pentacene at a blending ratio of 1:0.5 had the largest light-to-dark current ratio, i.e., approximately 33.8 and 23.5 when exposed to monochromatic light at wavelengths of 515 nm and 450 nm, respectively. The TFT with the P3HT:TIPS-pentacene blending ratio of 1:0.5 exhibited the highest photosensitivity values of 261.9 and 49.6 upon irradiation with light at wavelengths of 515 nm and 450 nm, respectively. The observed improvement in the performance of the heterogeneously blended organic transistors is discussed in relation to the morphological structure and charge transport path of the P3HT:TIPS-pentacene blended semiconductor films.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Effect of Heat Insulation on Decomposition of Ricestraw Pile in the P.E.Film House during Winter Season (겨울철 비닐하우스내의 볏짚퇴비더미의 온도변화와 부숙효과)

  • Lee, Yun Hwan;Kim, Yong Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.27-31
    • /
    • 1985
  • To get well matured farm yard manure from ricestraw as quickly as possible during winter season, straw piles wrapped with polyethylene film and/or straw thatch were stored in the vinyl house or open air. Their maturities and changes of temperature in heap were investigated from the beginning of December 1983 to March of next year. Heat increment in vinyl house was high $2-5^{\circ}C$ than at open air at the lowest temperature but it didn't rise over the freezing point. However, the highest temperature was arisen over than $20^{\circ}C$ averagely at the vinylhouse compared to those of open air during three months. Temperature in piles of straw manure was reached to about $70^{\circ}C$ in maximum and rose again very rapidly after repiling in the vinyl house, whereas increment of temperature after repiling was delayed and took long times to reach the maximum temperature at open air. Wrapping with P.E. film also affected the insulation of decomposing heat of straw pile and promoted the repeat of piling even at open air. By these results, ricestraw would be decomposed rapidly by insulation with P.E. film in the vinyl house and could be reached to matured compost for application to field on next spring season. P.E. film covered for vinyl house was endured until May of next year without tear by weathering.

  • PDF

Optimization of p-i-n amorphous silicon thin film solar cells using simulation (시뮬레이션을 통한 p-i-n 비정질 실리콘 박막 태양전지의 최적화)

  • Park, Seung-Man;Lee, Young-Suk;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.436-436
    • /
    • 2009
  • 현재 상용화되어 있는 결정질 태양전지의 경우 높은 실리콘 가격으로 인해 저가화에 어려움을 격고 있다. 따라서 태양전지 저가화의 한 방법으로 박막태양전지가 주목을 받고 있다. P-I-N 구조의 박막태양전지에서 각 층의 thickness, activation energy, energy bandgap은 고효율 달성을 위한 중요한 요소이다. 본 논문에서는 박막태양전지 P-I-N layer의 가변을 통하여 고효율을 달성하기 위한 simulation을 수행하였다. 가변 조건으로는 p-layer의 thickness, activation energy 그리고 energy bandgap을 단계별로 변화시켰고 i-layer는 thickness를 n-layer는 thickness와 activation energy를 가변하여 최적의 조건을 찾아 분석하였다. 최종 simulation 결과 p-layer의 thickness 5nm, activation energy 0.3eV 그리고 energy bandgap 1.8eV에서, i-layer thickness 400nm, n-layer thickness 30nm, activation energy 0.2eV에서 최고 효율 11.08%를 달성하였다.

  • PDF

Survey on packaging status and changes in quality of tomato and paprika using different packaging types (토마토와 파프리카의 포장실태조사 및 포장재 종류에 따른 품질변화)

  • Chang, Min-Sun;Lim, Byung Sun;Kim, Ji Gang;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.23 no.2
    • /
    • pp.166-173
    • /
    • 2016
  • This study aimed to evaluate the commercialized packaging status of tomato and paprika, and to investigate the effect of different packaging materials on the quality of tomato and paprika during storage. Packaging statuses were surveyed at a department store, wholesale market, and supermarket in Seoul, Korea. Materials used for packaging tomato and paprika were cartons, polypropylene (PP), low-density polyethylene (LDPE), polystyrene (PS), and polyvinyl chloride (PVC). Tomato and paprika were packaged by using corrugated boxes, Styrofoam trays, PP film, and PVC film. The weight loss and hardness of non-packaged tomato and paprika were significantly different after 48 hr to the initial values (p<0.05). Box-packaged tomatoes had the lowest pH values and showed significantly higher soluble solid contents (p<0.05). However, there were no significant differences in among other packaging materials. For paprika, the ${\Delta}E$ values of PVC wrapping were higher than those of other packagings. Hence, the results demonstrated that a corrugated box with PP film and PP film bags with four holes plus wire-tying were most able to maintain the overall qualities of tomato and paprika, respectively, during storage.

Development and Stability Evaluation of Enteric Coated Diclofenac Sodium Tablets Using AquaPolish E.

  • Zaid, A.N.;Fadda, A.M.;Nator, S.;Qaddumi, A.
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.4
    • /
    • pp.211-215
    • /
    • 2011
  • The aim of this study was to develop a stable enteric coated diclofenac sodium (DFS) tablets using Aqua-Polish E without using a subcoat. DFS uncoated tablets were manufactured through the non direct compression process. AquaPolish E white aqueous coating dispersion was used as enteric coating material. This film forming polymer is a mixture of selected polymethacrylic/ethylacrylate copolymers. The stability of the obtained enteric coated tablets was evaluated according to ICH guidelines. No signs of disintegration or cracking was observed when they placed in 0.1N HCl solution (pH1.2), but they were completely disintegrated within 10 minutes when they placed in buffered solution at pH6.8. Dissolution test was also conducted by placing tablets in 0.1 N HCl for 2 hours and then 1 hour in phosphate buffer at pH 6.8. Less than 0.9 % of drug was released in the acidic phase and up to 97% in the basic medium. These findings suggest that aqueous enteric coating with AquaPolish E system is an easy and economical approach for preparing stable DFS enteric coat without the use of a subcoating layer.