• 제목/요약/키워드: P-gp Inhibitors

검색결과 13건 처리시간 0.02초

In silico Study on the Interaction between P-glycoprotein and Its Inhibitors at the Drug Binding Pocket

  • Kim, Namseok;Shin, Jae-Min;No, Kyoung Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2317-2325
    • /
    • 2014
  • P-glycoprotein (P-gp) is a member of the ATP-Binding Cassette transporter superfamily and mediates transmembrane efflux of many drugs. Since it is involved in multi-drug resistance activity in various cancer cells, the development of P-gp inhibitor is one of the major concerns in anticancer therapy. Human P-gp protein has at least two "functional" drug binding sites that are called "H" site and "R" site, hence it has multi-binding-specificities. Though the amino acid residues that constitute in drug binding pockets have been proposed by previous experimental evidences, the shapes and the binding poses are not revealed clearly yet. In this study, human P-gp structure was built by homology modeling with available crystal structure of mouse P-gp as a template and docking simulations were performed with inhibitors such as verapamil, hoechst33342, and rhodamine123 to construct the interaction between human P-gp and its inhibitors. The docking simulations were performed 500 times for each inhibitor, and then the interaction frequency of the amino acids at the binding poses was analyzed. With the analysis results, we proposed highly contributing residues that constitute binding pockets of the human P-gp for the inhibitors. Using the highly contributing residues, we proposed the locations and the shapes of verapamil binding site and "R" site, and suggested the possible position of "H" site.

Modulation of Multidrug Resistance in Cancer by P-Glycoprotein

  • Gadhe, Changdev G.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제4권1호
    • /
    • pp.23-30
    • /
    • 2011
  • Multidrug resistance (MDR) is one of the main obstacles in the chemotherapy of cancer. MDR is associated with the over expression of P-glycoprotein (P-gp), resulting in increased efflux of chemotherapy from cancer cells. Inhibiting P-gp as a method to reverse MDR in cancer patients has been studied extensively, but the results have generally been disappointing. First-generation agents were limited by unacceptable toxicity, whereas second-generation agents had better tolerability but were confounded by unpredictable pharmacokinetic interactions and interactions with other transporter proteins. Third-generation inhibitors have high potency and specificity for P-gp. Furthermore, pharmacokinetic studies to date have shown no appreciable impact on drug metabolism and no clinically significant drug interactions with common chemotherapy agents. Third-generation P-gp inhibitors have shown promise in clinical trials. The continued development of these agents may establish the true therapeutic potential of P-gp-mediated MDR reversal.

Investigation of Binding Modes of the Verapamil and Curcumin into Human P-glycoprotein (P-gp)

  • Gadhe, Changdev G.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제6권4호
    • /
    • pp.205-210
    • /
    • 2013
  • Human P-gp is a protein responsible for the multidrug resistance (MDR) and causes failure of cancer chemotherapy. Till date no X-ray crystal structure is reported for this membrane protein, which hampers active research in the field. We performed homology modeling to develop three dimensional (3D) model of P-gp, and docking studies of the verapamil and curcumin have been performed to gain insight into the interaction mechanism between inhibitors and P-gp. It was identified that the inhibitors docked into the upper part of P-gp and interacted through the hydrophobic interactions.

Combination of Curcumin and Paclitaxel-loaded Solid Lipid Nanoparticles to Overcome Multidrug Resistance

  • Li, Rihua;Xu, Wenting;Eun, Jae-Soon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권6호
    • /
    • pp.381-386
    • /
    • 2011
  • Multi-drug resistance (MDR) has been known as a major hurdle in cancer chemotherapy. One of the most clinically significant causes of MDR was the efflux of anticancer agents mediated by p-glycoprotein (p-gp) over-expressed in MDR cancer cells. To overcome MDR, there have been several strategies such as co-administration with p-gp inhibitors and encapsulation of anticancer drugs into drug delivery systems. In the present study, curcumin was evaluated for its potential as p-gp inhibitor and MDR reversal activity when combined with paclitaxel incorporated into lipid nanoparticles (PTX/LN). Western blot assay showed curcumin did not modulate the level of p-gp expression in MCF-7/ADR which is a MDR variant of human breast cancer cell line, MCF-7, and over-expresses p-gp. However, curcumin inhibited p-gp-mediated efflux of calcein in a dose-dependent manner even though it showed lower activity compared to verapamil, a well-known p-gp inhibitor. Incorporation of paclitaxel into lipid nanoparticles partially recovered the anticancer activity of paclitaxel in MCF-7/ADR. The combined use of curcumin and PTX/LN exhibited further full reversal of MDR, suggesting susceptibility of PTX/LN to the efflux system. In conclusion, combined approach of using p-gp inhibitors and incorporation of the anticancer agents into nano-delivery systems would be an efficient strategy to overcome MDR.

Evaluating the Regulation of P-glycoprotein by Phytochemicals Using Caco-2 Cell Permeability Assay System

  • Choi, Ran Joo;Kim, Yeong Shik
    • Natural Product Sciences
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2014
  • P-glycoprotein (P-gp) is a permeability glycoprotein also known as multidrug resistance protein 1 (MDR1). P-gp is an ATP-binding cassette (ABC) transporter that pumps various types of drugs out of cells. These transporters reduce the intracellular concentrations of drugs and disturb drug absorption. The Caco-2 cell permeability assay system is an effective in vitro system that predicts the intestinal absorption of drugs and the functions of enzymes and transporters. Rhodamine-123 (R-123) and digoxin are well-known P-gp substrates that have been used to determine the function of P-gp. Efflux of P-gp substrates by P-gp has been routinely evaluated. To date, a number of herbal medicines have been tested with Caco-2 cell permeability assay system to assess bioavailability. There are growing efforts to find phytochemicals that potentially regulate P-gp function. The Caco-2 cell permeability assay system is a primary strategy to search for candidates of P-gp inhibitors. In this mini review, we have summarized the P-gp modulation by herbal extracts, decoctions or single components from natural products using Caco-2 cell permeability assays. Many natural products are known to regulate P-gp and herbal medicines could be used in combination with conventional drugs to enhance bioavailability.

Enhancing Activity of Anticancer Drugs in Multidrug Resistant Tumors by Modulating P-Glycoprotein through Dietary Nutraceuticals

  • Khan, Muhammad;Maryam, Amara;Mehmood, Tahir;Zhang, Yaofang;Ma, Tonghui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6831-6839
    • /
    • 2015
  • Multidrug resistance is a principal mechanism by which tumors become resistant to structurally and functionally unrelated anticancer drugs. Resistance to chemotherapy has been correlated with overexpression of p-glycoprotein (p-gp), a member of the ATP-binding cassette (ABC) superfamily of membrane transporters. P-gp mediates resistance to a broad-spectrum of anticancer drugs including doxorubicin, taxol, and vinca alkaloids by actively expelling the drugs from cells. Use of specific inhibitors/blocker of p-gp in combination with clinically important anticancer drugs has emerged as a new paradigm for overcoming multidrug resistance. The aim of this paper is to review p-gp regulation by dietary nutraceuticals and to correlate this dietary nutraceutical induced-modulation of p-gp with activity of anticancer drugs.

Screening for Chemosensitizers from Natural Plant Extracts through the Inhibition Mechanism of P-glycoprotein

  • Ahn, Hee-Jeong;Song, Im-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권5호
    • /
    • pp.269-275
    • /
    • 2010
  • P-gp plays a critical role in drug disposition and represents a mechanism for the development of multidrug resistance. Flavonoids, a major class of natural compounds widely present in foods and herbal products, have been shown to inhibit P-gp. Therefore, the aim of this study was to identify new candidate chemosensitizers by screening various plant extracts. The ability of natural plant extracts to inhibit P-gp activity was assessed by measuring cellular accumulation of calcein AM, daunorubicin and vincristine in P-gp overexpressing MDCKII-MDR1 cells. Among more than 800 plant extracts, eight were found to inhibit P-gp activity. Curcuma aromatica extract produced greatest inhibition, followed by Curcuma longa and Dalbergia odorifera extracts. Extracts of Aloe ferox, Curcuma zedoariae rhizome, Zanthoxylum planispinum, and Ageratum conyzoides showed moderate inhibitory effects. Curcumin and quercetin exhibited similar inhibition of P-gpmediated efflux of daunorubicin and vincristine, and flavones had a lesser effect. When chemosensitizing effect was evaluated by measuring daunorubicin sensitivity to MDCKII-MDR1 cells in the presence of natural plant extracts, Curcuma aromatica showed the most potent chemosensitizing effect based on daunorubicin cytotoxicity. In conclusion, natural plant extracts such as Curcuma aromatica can potently inhibit P-gp activity and may have potential as a novel chemosensitizers.

Effect of Drugs on the Cardiac Transport, Metabolism and Action of Idarubicin: Pharmacokinetic and Pharmacodynamic Modeling

  • Kang, Won-Ku
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.212-213
    • /
    • 2002
  • Using the isolated perfused rat heart this study investigated 1) the cardiac uptake of idarubicin (IDA), 2) the role of P-glycoprotein (P-gp) in the uptake process, 3) the formation of IDOL from IDA in the heart, and 4) the effect of P-gp inhibitors (verapamil, amiodarone, PSC 833), doxorubicin, hypothermia, xanthine derivatives (caffeine, theophylline) and metabolism inhibitors (rutin, phenobarbital) on the pharmacokinetics and pharmacodynamics of IDA using a mathematical modeling approach. A minimal model was constructed; the differential equations were numerically solved and fitted to the data using the ADAPT II-software package using maximum likelihood estimation assuming that the measurement error has a standard deviation which is a linear function of the measured quantity[1]. (omitted)

  • PDF

천연 추출물을 이용한 화학감작제 후보물질 탐색 (Screening of Chemosensitizer Candidates Using Natural Extracts)

  • 안희정;김지영;이충환;송임숙;유광현
    • 생명과학회지
    • /
    • 제18권9호
    • /
    • pp.1244-1248
    • /
    • 2008
  • 본 연구에서는 다양한 천연 추출물의 P-gp 저해능의 고속 탐색을 통하여 새로운 화학감작제 후보물질을 발굴하고자 하였다. P-gp 활성에 대한 천연 추출물의 저해능은 P-gp이 과발현된 L-MDR1 세포주를 이용하여 대표적인 P-gp 기질 약물인 calcein AM의 세포 내 축적 정도를 측정함으로써 평가하였다. 강황 및 울금은 가장 강력한 P-gp 기능 저해를 나타내었고, 이외에도 Mentrasto, 취호초, 봉출, Rakta chandan, 강진향, 소목, 노회 등의 순으로 P-gp 기능 저해능을 보였다. 이들 추출물에서 P-gp 저해능을 보이는 성분을 확인하기 위하여 LC/MS/MS 분석을 수행한 결과, 기존에 P-gp 활성을 저해한다고 잘 알려진 curcumin 이외에, 다양한 플라보노이드 화합물이 질량 스펙트럼 DB 검색을 통하여 확인되었다. In vitro 연구 결과를 통하여 상기의 천연 추출물이 P-gp 활성을 저해하는 성분을 함유하고 있음을 확인하였다. 향후 이들 천연 추출물의 화학감작제 후보물질로의 사용 가능성에 대한 in vivo 연구가 필요할 것이다.

Flavonoids: An Emerging Lead in the P-glycoprotein Inhibition

  • Gadhe, Changdev G.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제5권2호
    • /
    • pp.72-78
    • /
    • 2012
  • Multidrug resistance is a major obstacle in cancer chemotherapy. Cancer cells efflux chemotherapeutic drug out of cell by means of transporter and reduce the active concentration of it inside cell. Such transporters are member of the ATP binding cassettes (ABC) protein. It includes P-gp, multiple resistant protein (MRP), and breast cancer resistant protein (BCRP). These proteins are widely distributed in the human cells such as kidney, lung, endothelial cells of blood brain barrier etc. However, there are number of drugs developed for it, but most of them are getting transported by it. So, still there is necessity of a good modulator, which could effectively combat the transport of chemotherapeutic agents. Natural products origin modulators were found to be effective against transporter such as flavonoids, which belongs to third generation modulators. They have advantage over synthetic inhibitor in the sense that they have simple structure and abundant in nature. This review focuses on the P-gp structure its architecture, efflux mechanism, herbal inhibitors and their mechanism of action.