DOI QR코드

DOI QR Code

Flavonoids: An Emerging Lead in the P-glycoprotein Inhibition

  • Gadhe, Changdev G. (Department of Pharmacoinformatics, NIPER) ;
  • Cho, Seung Joo (Department of Cellular.Molecular Medicine and Research Center for Resistant Cells, College of Medicine, Chosun University)
  • Received : 2012.06.05
  • Accepted : 2012.06.24
  • Published : 2012.06.30

Abstract

Multidrug resistance is a major obstacle in cancer chemotherapy. Cancer cells efflux chemotherapeutic drug out of cell by means of transporter and reduce the active concentration of it inside cell. Such transporters are member of the ATP binding cassettes (ABC) protein. It includes P-gp, multiple resistant protein (MRP), and breast cancer resistant protein (BCRP). These proteins are widely distributed in the human cells such as kidney, lung, endothelial cells of blood brain barrier etc. However, there are number of drugs developed for it, but most of them are getting transported by it. So, still there is necessity of a good modulator, which could effectively combat the transport of chemotherapeutic agents. Natural products origin modulators were found to be effective against transporter such as flavonoids, which belongs to third generation modulators. They have advantage over synthetic inhibitor in the sense that they have simple structure and abundant in nature. This review focuses on the P-gp structure its architecture, efflux mechanism, herbal inhibitors and their mechanism of action.

Keywords

References

  1. I. Klein, B. Sarkadi, and A. Varadi, "An inventory of the human ABC proteins", Biochim. Biophys. Acta., Vol. 1461, pp. 237-262, 1999. https://doi.org/10.1016/S0005-2736(99)00161-3
  2. T. Fojo, and S. Bates, "Strategies for reversing drug resistance", Oncogene, Vol. 22, pp. 7512-7523, 2003. https://doi.org/10.1038/sj.onc.1206951
  3. A. Bodo, E. Bakos, F. Szeri, A. Varadi, and B. Sarkadi, "The role of multidrug transporters in drug availability, metabolism and toxicity", Toxicol. Lett., Vol. 140, pp. 133-143, 2003.
  4. S. E. L. Mirski, J. H. Gerlach, and S. P. C. Cole, "Multidrug resistance in a human small cell lung cancer cell line selected in Adriamycin", Cancer Res., Vol. 47, pp. 2594-2598, 1987.
  5. D. R. Hipfner, R. G. Deeley, and S. P. C. Cole, "Structural, mechanistic and clinical aspects of MRP1", Biochim. Biophys. Acta, Vol. 1461, pp. 359-376, 1999. https://doi.org/10.1016/S0005-2736(99)00168-6
  6. E. M. Leslie, R. G. Deeley, and S. P. C. Cole, "Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters", Toxicology, Vol. 167, 3-23, 2001. https://doi.org/10.1016/S0300-483X(01)00454-1
  7. H. Kusuhara, and Y. Sugiyama, "ATP-binding cassette, subfamily G (ABCG family)", Pflugers Arch., Vol. 453, pp. 735-744, 2007. https://doi.org/10.1007/s00424-006-0134-x
  8. L. A. Doyle, W. D. Yang, L.V. Abruzzo, T. Krogmann, Y. Gao, A. K. Rishi, and D. D. Ross, "A multidrug resistance transporter from human MCF-7 breast cancer cells", Proc. Natl. Acad. Sci. U. S. A., Vol. 95, pp. 15665-15670, 1998. https://doi.org/10.1073/pnas.95.26.15665
  9. T. Litman, M. Brangi, E. Hudson, P. Fetsch, A. Abati, D. D. Ross, K. Miyake, J. H. Resau, and S. E. Bates, "The multidrug-resistant phenotype associated with overexpression of the new ABC halftransporter, MXR (ABCG2)", J. Cell. Sci. Vol. 113, pp. 2011-2021, 2000.
  10. S. G. Aller, J. Yu, A. Ward, Y. Weng, S. Chittaboina, R. Zhuo, P. M. Harrell, Y. T. Trinh, Q. Zhang, I. L. Urbatsch and G. Chang, "Structure of P-glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding", Science, Vol. 323, pp. 1718-1722, 2009. https://doi.org/10.1126/science.1168750
  11. R. J. P. Dawson, and K.P. Locher, "Structure of a bacterial multidrug ABC transporter", Nature, Vol. 443, pp. 180-185, 2006. https://doi.org/10.1038/nature05155
  12. U. A. Germann, T. C. Chambers, S. V. Ambudkar, T. Licht, C. O. Cardarelli, I. Pastan, and M. M. Gottesman, "Characterization of phosphorylation-defective mutants of human P-glycoprotein expressed in mammalian cells", J. Biol. Chem., Vol. 271, pp. 1708-1716, 1996. https://doi.org/10.1074/jbc.271.3.1708
  13. H. R. Goodfellow, A. Sardini, S. Ruetz, R. Callaghan, P. Gros, P. A. McNaughton, and C. F. Higgins, "Protein kinase C-mediated phosphorylation does not regulate drug transport by the human multidrug resistance P-glycoprotein", J. Biol. Chem., Vol. 271, pp. 13668-13674, 1996. https://doi.org/10.1074/jbc.271.23.13668
  14. S. P. Hardy, H. R. Goodfellow, M. A. Valverde, D. R. Gill, V. Sepúlveda, and C. F. Higgins, "Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels", EMBO J., Vol. 14, pp. 68-75, 1995.
  15. T. Tsuruo, H. Iida, S. Tsukagoshi, and Y. Sakurai, "Enhancement of vincristine- and adriamycininduced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and Adriamycin", Biochem. Pharmacol., Vol. 31, pp. 3138-3140, 1982. https://doi.org/10.1016/0006-2952(82)90097-1
  16. H. Thomas, andH. M. Coley, "Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P glycoprotein", Cancer Control, Vol. 10, pp. 159-165, 2003. https://doi.org/10.1177/107327480301000207
  17. J. Robert and C. Jarry, "Multidrug resistance reversal agents", J. Med. Chem., Vol. 46, pp. 4805-4817, 2003. https://doi.org/10.1021/jm030183a
  18. R. Krishna and L. D. Mayer, "Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs", Eur. J. Pharm. Sci., Vol. 11, pp. 265-283, 2000. https://doi.org/10.1016/S0928-0987(00)00114-7
  19. M. Roe, A. Folkes, P. Ashworth, J. Brumwell, L. Chima, S. Hunjan, I. Pretswell, W. Dangerfield, H. Ryder, and P. Charlton, "Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives", Bioorg. Med. Chem. Lett., Vol. 9, pp. 595-600, 1999. https://doi.org/10.1016/S0960-894X(99)00030-X
  20. V. Jekerle, W. Klinkhammer, D. A. Scollard, K. Breitbach, R. M. Reilly, M. Piquette-Miller, and M. Weise, "In vitro and in vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques", Int. J. Cancer., Vol. 119, pp. 414-422, 2006. https://doi.org/10.1002/ijc.21827
  21. H. Muller, W. Klinkhammer, C. Globisch, M. U. Kassack, I. K. Pajeva, and M. Wiese. "New functional assay of P-glycoprotein activity using Hoechst 33342", Bioorg. Med. Chem., Vol. 15, pp. 7470-7479, 2007. https://doi.org/10.1016/j.bmc.2007.07.024
  22. H. Muller, I. K. Pajeva, C. Globisch, and M. Wiese, "Functional assay and structure-activity relationships of new third-generation P-glycoprotein inhibitors", Bioorg. Med. Chem., Vol. 16, pp. 2448-2462, 2008. https://doi.org/10.1016/j.bmc.2007.11.057
  23. K. Ueda, Y. Taguchi, and M. Morishima, "How does P-glycoprotein recognize its substrates", Semin. Cancer Biol., Vol. 8, pp. 151-159, 1997. https://doi.org/10.1006/scbi.1997.0066
  24. Z. E. Sauna, and S. V. Ambudkar, "Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein", Proc. Natl. Acad. Sci., Vol. 97, pp. 2515-2520, 2000. https://doi.org/10.1073/pnas.97.6.2515
  25. M. Varma, Y. Ashokraj, C. S. Dey, and R. Panchagnula, "P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement", Pharmacol. Res., Vol. 48, pp. 347-359, 2003. https://doi.org/10.1016/S1043-6618(03)00158-0
  26. S. V. Ambudkar, I. W. Kim, and Z. E. Sauna, "The power of the pump: mechanisms of action of P-glycoprotein (ABCB1)", Eur. J. Pharm. Sci., Vol. 27, pp. 392-400, 2006. https://doi.org/10.1016/j.ejps.2005.10.010
  27. V. R. Tandon, B. Kapoor, G. Bano, S. Gupta, Z. Gillani, S. Gupta, and D. Kour, "Pglycoprotein: Pharmacological relevance", Indian J. Pharmacol., Vol. 38, pp. 13-24, 2006. https://doi.org/10.4103/0253-7613.19847
  28. K. R. Narayana, M. S. Reddy, M. R. Chaluvadi, and D. R. Krishna, "Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential", Ind. J. Pharmacol., Vol. 33, pp. 2-16, 2001.
  29. Z. E. Sauna, and S. V. Ambudkar, "Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein", Proc. Natl. Acad. Sci., Vol. 97, pp. 2515-2520, 2000. https://doi.org/10.1073/pnas.97.6.2515
  30. Z. E. Sauna, M. M. Smith, M. Muller, K. M. Kerr, and S. V. Ambudkar, "The mechanism of action of multidrug-resistance-linked P-glycoprotein J", Bioener. Biomemb., Vol. 33, pp. 481-491, 2001. https://doi.org/10.1023/A:1012875105006
  31. R. Regev, Y. G. Assaraf, and G. D. Eytan, "Membrane fluidization by ether, other anesthetics, and certain agents abolishes Pglycoprotein ATPase activity and modulates efflux from multidrug-resistant cells", Eur. J. Biochem., Vol. 25, pp. 18-24, 1999.
  32. K. Sachs-Barrable, A. Thamboo, S. D. Lee, and K. M. Wasan, "Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells", J. Pharm. Pharm. Sci., Vol. 10, pp. 319-331, 2007.
  33. A. Boumendjel, A. Di Pietro, C. Dumontet, and D. Barron, "Recent advances in the discovery of flavonoids and analogues with high affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance", Med. Res. Rev., Vol. 22, pp. 512-529, 2002. https://doi.org/10.1002/med.10015

Cited by

  1. Quantitative Structure–Activity Relationships for the Flavonoid-Mediated Inhibition of P-Glycoprotein in KB/MDR1 Cells vol.24, pp.9, 2012, https://doi.org/10.3390/molecules24091661