• Title/Summary/Keyword: P-gal

Search Result 313, Processing Time 0.032 seconds

Secretion and Localization of Pseudomonas auratiaca Levansucrase Expressed in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 발현된 Pseudomonas aurantiaca Levansucrase의 분비국재성)

  • 임채권;김광현;김철호;이상기;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.206-211
    • /
    • 2004
  • Levansucrase gene(lscA) from Pseudomonas aurantiaca was subcloned downstream of GAL1 promoter in pYES 2.0 and pYInu-AT [GAL10 promoter + exoinulinase signal sequence of Kluyveromyces marxianus], resulting pYES-lscA and p YInu-lscA, respectively. The two expression plasmids were introduced into an invertase-deficient strain, Sacchromayces cerevisiae SEY2102, and transformants with high activity of levansucrase were selected. When each yeast transform ants was cultivated in medium containing galactose, the extracellular and intracellular activities of levansucrase reached about 8.62 U/ml with the strain harboring pYES-lscA and 5.43 U/ml with the strain harboring pYInu-lscA. The levansucrase activity of 80% was detected in the periplasmic space and cytoplasm. The levansucrase activity in the medium of SEY2102/pYInu-lscA was 0.87 U/ml whereas that of SEY2102/pYES-lscA was 0.47 U/ml, which implying the exoinulinase signal sequence didn't enhance the secretion efficiency of levansucrase. Furthermore, the recombinant levansucrase expressed in yeast seems to be produced as a hyper-glycosylated form.

Incapability of Utilizing Galactose by pgs1 Mutation Occurred on the Galactose Incorporation Step in Saccharomyces cerevisiae

  • Rho, Min-Suk;Su, Xuefeng;Lee, Yoon-Shik;Kim, Woo-Ho;Dowhan, William
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.84-91
    • /
    • 2006
  • A Saccharomyces cerevisiae pgs1 nulI mutant, which is deficient with phosphatidyl glycerol (PG) and cardiolipin (CL) biosynthesis, grows well on most fermentable carbon sources, but fails to grow on non-fermentable carbon sources such as glycerol, ethanol, and lactate. This mutant also cannot grow on galactose medium as the sole carbon source. We found that the incorporation of $[^{14}C]-galactose$, which is the first step of the galactose metabolic pathway (Leloir pathway), into the pgs 1 null mutant cell was extremely repressed. Exogenously expressed PGS1 (YCpPGS1) under indigenous promoter could completely restore the pgs1 growth defect on non-fermentable carbon sources, and dramatically recovered $[^{14}C]-galactose$ incorporation into the pgs1 mutant cell. However, PGS1 expression under the GALl promoter $(YEpP_{GAL1}-PGS1myc)$ could not complement pgs1 mutation, and the GAL2-lacZ fusion gene $(YEpP_{GAL2}-lacZ)$ also did not exhibit its $\beta-galactosidase$ activity in the pgs1 mutant. In wild-type yeast, antimycin $A(1\;{\mu}g/ml)$, which inhibits mitochondrial complex III, severely repressed not only the expression of the GAL2-lacZ fusion gene, but also uptake of $[^{14}C]-galactose$. However, exogenously expressed PGS1 partially relieved these inhibitory effects of antimycin A in both the pgs1 mutant and wild-type yeast, although it could not basically restore the growth defect on galactose by antimycin A. These results suggest that the PGSI gene product has an important role in utilization of galactose by Gal genes, and that intact mitochondrial function with PGS1 should be required for galactose incorporation into the Leloir pathway. The PGS1 gene might provide a clue to resolve the historic issue about the incapability of galactose with deteriorated mitochondrial function.

Surface Photovoltage Characteristics of ${In_{0.5}}({Ga_{1-x}}{Al_x})_{0.5}P$/GaAs Double Heterostructures (${In_{0.5}}({Ga_{1-x}}{Al_x})_{0.5}P$/GaAs 이중 이종접합 구조에 대한 표면 광전압 특성)

  • Kim, Ki-Hong;Choi, Sang-Soo;Bae, In-Ho;Kim, I n-Soo;Park, Sung-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.655-660
    • /
    • 2001
  • Surface photovoltage spectroscopy was used to study $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P/GaAs$ grown by metalorganic chemical vapor deposition(MOCVD). Energy gap related transition in GaAs and $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$ were observed. By measuring the frequency dependence of $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P/GaAs$, we observed that SPV line shape does not chance, whereas the amplitude change. This results is due to the difference in the lifetimes of the photocarriers in GaAs and in $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$. We also have evaluated the parameters that describe the temperature dependences of the band gap.

  • PDF

Hepatoprotective Effects of Oyster Hydrolysate on Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Injury in Mice (Lipopolysaccharide/D-Galactosamine에 의해 유도된 급성 간 손상 생쥐모델에서 굴가수분해물의 간 보호 효과)

  • Ryu, Ji Hyeon;Kim, Eun-Jin;Xie, Chengliang;Nyiramana, Marie Merci;Siregar, Adrian S.;Park, Si-Hyang;Cho, Soo Buem;Song, Dae Hyun;Kim, Nam-Gil;Choi, Yeung Joon;Kang, Sang Soo;Kang, Dawon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.659-670
    • /
    • 2017
  • Oxidative stress and inflammation are key factors responsible for progression of liver injury. A variety of functions of oyster hydrolysate (OH) are affected by their antioxidant and anti-inflammatory activities. However, little is known regarding the effects of OH on a liver injury model. This study was performed to evaluate the effects of OH on acute liver injury induced by lipopolysaccharide/D-galactosamine (LPS/D-GalN) in mice. Experimental groups were divided into six groups as follows (each group, n=10): control (saline), LPS/D-GalN, LPS/D-GalN+OH (100 mg/kg), LPS/D-GalN+OH (200 mg/kg), LPS/D-GalN+OH (400 mg/kg), and LPS/D-GalN+silymarin (25 mg/kg, positive control). The experimental acute liver injury model was induced with LPS ($1{\mu}g/kg$) and D-GalN (400 mg/kg). We first analyzed antioxidant and anti-inflammatory activities in OH. OH showed high DPPH and ABTS radical scavenging activities and reduced ROS generation in Chang cells in a dose-dependent manner. In addition, OH showed anti-inflammatory activities, such as inhibition of cyclooxygenase-2 and 5-lipooxygenase. Treatment with OH down-regulated tumor necrosis factor $(TNF)-{\alpha}$, interleukin (IL)-6, and $IL-1{\alpha}$ expression levels in LPS-stimulated RAW264.7 cells. OH significantly reduced LPS/D-GalN-induced increases in the concentrations of alanine transaminase and aspartate aminotransferase in serum. In the LPS/D-GalN group, liver tissues exhibited apoptosis of hepatocytes with hemorrhages. These pathological alterations were ameliorated by OH treatment. Consistently, hepatic catalase activity was low in the LPS/D-GalN group compared to the control group, and catalase activity was significantly restored by OH treatment (P<0.05). Furthermore, OH markedly reduced the LPS/D-GalN-induced increase in $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 levels in liver tissue. Taken together, these results show that OH has hepatoprotective effects on LPS/D-GalN-induced acute liver injury via inhibition of oxidative stress and inflammation, suggesting that OH could be used as a health functional food and potential therapeutic agent for acute liver injury.

Preparation of $Gal^3Man_4(6^3-mono-{\alpha}-D-galacto-pyranosyl-{\beta}-mannotetraose)$ by Bacillus sp. ${\beta}-mannanase$ and Growth Activity to Intestinal Bacteria (Bacillus sp.유래 ${\beta}-mannanase$에 의한 $Gal^3Man_4(6^3-mono-{\alpha}-D-galacto-pyranosyl-{\beta}-mannotetraose)$ 조제 및 장내세균에 대한 생육활성)

  • Kim, Sang-Woo;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.379-383
    • /
    • 2004
  • For the elucidation of substrate specificity to the brown copra meal by Bacillus sp. ${\beta}-mannanase.$, the enzymatic hydrolysate after 24 hr of reaction was heated in a boiling water bath for 10 min, and then centrifuged to remove the insoluble materials from hydrolysates. The major hydrolysates composed of D.P 5 and 7 galactosyl mannooligosaccharides. For the separate of galactosyl mannooligosaccharides, the supernatant solution of 150 ml was put on a first activated carbon column. The column was then washed with 5 l of water to remove mannose and salts. The oligosaccharides in the column were eluted by a liner gradient of $0{\sim}30%$ ethanol, at the flow rate of 250 ml per hour. The sugar composition in each fraction tubes was examined by TLC and FACE analysis. The combined fraction from F3 was concentrated to 30 ml by vacuum evaporator. Then put on a second activated carbon column. The oligosaccharides in the column were eluted by a liner gradient of $0{\sim}30%$ ethanol (total volume: 5 l), at the flow rate of 250 ml per hour. The eluent was collected in 8 ml fraction tubes, and the total sugar concentration was measured by method of phenol-sulfuric acid. The major component of F2 separated by 2nd activated carbon column chromatography were identified $Gal^3Man_4(6^3-mono-{\alpha}-D-galactopyranosyl-{\beta}-mannotetraose)$. To investigate the effects of brown copra meal galactomannooligosaccharides on growth of Bifidobacterium longum, B. bifidum were cultivated individually on the modified-MRS medium containing carbon source such as $Gal^3Man_4$, compared to those of standard MRS medium.

Ginsenoside Rg1 supplementation clears senescence-associated β-galactosidase in exercising human skeletal muscle

  • Wu, Jinfu;Saovieng, Suchada;Cheng, I-Shiung;Liu, Tiemin;Hong, Shangyu;Lin, Chang-Yu;Su, I-Chen;Huang, Chih-Yang;Kuo, Chia-Hua
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.580-588
    • /
    • 2019
  • Background: Ginsenoside Rg1 has been shown to clear senescence-associated beta-galactosidase (SA-${\beta}$-gal) in cultured cells. It remains unknown whether Rg1 can influence SA-${\beta}$-gal in exercising human skeletal muscle. Methods: To examine SA-${\beta}$-gal change, 12 young men (age $21{\pm}0.2years$) were enrolled in a randomized double-blind placebo controlled crossover study, under two occasions: placebo (PLA) and Rg1 (5 mg) supplementations 1 h prior to a high-intensity cycling (70% $VO_{2max}$). Muscle samples were collected by multiple biopsies before and after cycling exercise (0 h and 3 h). To avoid potential effect of muscle biopsy on performance assessment, cycling time to exhaustion test (80% $VO_{2max}$) was conducted on another 12 participants (age $23{\pm}0.5years$) with the same experimental design. Results: No changes of SA-${\beta}$-gal were observed after cycling in the PLA trial. On the contrary, nine of the 12 participants showed complete elimination of SA-${\beta}$-gal in exercised muscle after cycling in the Rg1 trial (p < 0.05). Increases in apoptotic DNA fragmentation (PLA: +87% vs. Rg1: +133%, p < 0.05) and $CD68^+$ (PLA:+78% vs. Rg1:+121%, p = 0.17) occurred immediately after cycling in both trials. During the 3-h recovery, reverses in apoptotic nuclei content (PLA:+5% vs. Rg1 -32%, p < 0.01) and increases in inducible nitrate oxide synthase and interleukin 6 mRNA levels of exercised muscle were observed only in the Rg1 trial (p < 0.01). Conclusion: Rg1 supplementation effectively eliminates senescent cells in exercising human skeletal muscle and improves high-intensity endurance performance.

Transgenic lettuce (Lactuca sativa L.) with increased vitamin C levels using GalUR gene (GalUR 유전자를 이용한 비타민 C 증대 상추 (Lactuca sativa L.) 형질전환체 개발)

  • Lim, Mi-Young;Cho, Yi-Nam;Chae, Won-Ki;Park, Young-Soo;Min, Byung-Whan;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • L-Ascorbic acid (vitamin C) in vegetables is an essential component of human nutrition. The objective is to transform lettuce (Lactuca sativa L.) with GalUR gene that is involved in the vitamin C biosynthesis. The cotyledons of Hwoahong (Nongwoo Bio Co.) were used to induce the callus and shoot under the selection media with MS + 30 g/L Sucrose + 0.5 mg/L BAP + 0.1 mg/L NAA + 100 mg/L kanamycin + 200 mg/L lilacillin, pH 5.2. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. We successfully transformed the lettuce with GaIUR gene and analyzed the levels of vitamin C. We found that some of the lettuce transgenic lines contained higher levels of vitamin C compared with the normal one (non-transformed). Especially, some of $T_1$ lettuces inserted by GalUR showed about $3{\sim}4$ times higher content of vitamin C compared to the non-transformed lettuce. This data support the previously work performed with GLOase transgenic $T_1$ lettuces from which several times higher content of vitamin C were identified. The $T_2$ lettuces with high content of vitamin C have been selected for further analysis.

Production of Chlorphenesin Galactoside by Whole Cells of ${\beta}$-Galactosidase-Containing Escherichia coli

  • Lee, Sang-Eun;Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.826-832
    • /
    • 2013
  • We investigated the transgalactosylation reaction of chlorphenesin (CPN) using ${\beta}$-galactosidase (${\beta}$-gal)-containing Escherichia coli (E. coli) cells, in which galactose from lactose was transferred to CPN. The optimal CPN concentration for CPN galactoside (CPN-G) synthesis was observed at 40 mM under the conditions that lactose and ${\beta}$-gal (as E. coli cells) were 400 g/l and 4.8 U/ml, respectively, and the pH and temperature were 7.0 and $40^{\circ}C$, respectively. The time-course profile of CPN-G synthesis under these optimal conditions showed that CPN-G synthesis from 40 mM CPN reached a maximum of about 27 mM at 12 h. This value corresponded to an about 67% conversion of CPN to CPN-G, which was 4.47-5.36-fold higher than values in previous reports. In addition, we demonstrated by thin-layer chromatography to detect the sugar moiety that galactose was mainly transferred from lactose to CPN. Liquid chromatography-mass spectrometry revealed that CPN-G and CPN-GG (CPN galactoside, which accepted two galactose molecules) were definitively identified as the synthesized products using ${\beta}$-gal-containing E. coli cells. In particular, because we did not use purified ${\beta}$-gal, our ${\beta}$-gal-containing E. coli cells might be practical and cost-effective for enzymatically synthesizing CPN-G. It is expected that the use of ${\beta}$-gal-containing E. coli will be extended to galactose derivatization of other drugs to improve their functionality.

Cloning and Expression of a Thermostable ${\alpha}$-Galactosidase from the Thermophilic Fungus Talaromyces emersonii in the Methylotrophic Yeast Pichia pastoris

  • Simila, Janika;Gernig, Anita;Murray, Patrick;Fernandes, Sara;Tuohy, Maria G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1653-1663
    • /
    • 2010
  • The first gene (${\alpha}$-gal1) encoding an extracellular ${\alpha}$-Dgalactosidase from the thermophilic fungus Talaromyces emersonii was cloned and characterized. The ${\alpha}$-gal1 gene consisted of an open reading frame of 1,792 base pairs interrupted by six introns that encoded a mature protein of 452 amino acids, including a 24 amino acid secretory signal sequence. The translated protein had highest identity with other fungal ${\alpha}$-galactosidases belonging to glycosyl hydrolase family 27. The ${\alpha}$-gal1 gene was overexpressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris. Recombinant ${\alpha}$-Gal1 was secreted into the culture medium as a monomeric glycoprotein with a maximal yield of 10.75 mg/l and purified to homogeneity using Hisbinding nickel-agarose affinity chromatography. The purified enzyme was maximally active at $70^{\circ}C$, pH 4.5, and lost no activity over 10 days at $50^{\circ}C$. ${\alpha}$-Gal1 followed Michaelis-Menten kinetics ($V_{max}\;of\;240.3{\mu}M/min/mg,\;K_m\;of\;0.294 mM$) and was inhibited competitively by galactose ($K_m{^{obs}}$ of 0.57 mM, $K_i$ of 2.77 mM). The recombinant T. emersonii ${\alpha}$-galactosidase displayed broad substrate preference, being active on both oligo- and polymeric substrates, yet had strict specificity for the ${\alpha}$-galactosidic linkage. Owing to its substrate preference and noteworthy stability, ${\alpha}$-Gal1 is of particular interest for possible biotechnological applications involving the processing of plant materials.