• Title/Summary/Keyword: P-deficiency tolerance

Search Result 11, Processing Time 0.027 seconds

Genetic interaction of Sub1A and Pup1 in rice

  • Shin, Na-Hyun;Yoo, Soo-Cheul;Chin, Joong Hyoun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.147-147
    • /
    • 2017
  • Rice is one of the major staple food in Asia, covering around half of the world population. More than 40% of rice cultivation area are subject to abiotic stresses such as drought, submergence and phosphate deficiency. Pyramiding useful genes into elite variety is a promising strategy to develop tolerance varieties to multiple abiotic stresses. However, some genes are not functionally compatible when they are introgressed into the same elite variety. Here, we tested the functional compatibility of Sub1 and Pup1, major QTLs for tolerance to submergence and phosphate (P)-deficiency conditions, respectively. Phenotypic analysis revealed that IR64-Sub1 Pup1(SP1) plants harboring both Sub1 and Pup1 QTLs showed significant tolerance to submerged conditions, similarly in IR64-Sub1 (Sub1) plant, while SP1 plants failed to tolerate to P-deficiency conditions; only IR64-Pup1 (Pup1) showed strong P-deficiency tolerance phenotype. In submerged conditions, the expression levels of Sub1A and PSTOL1, major genes for Sub1 and Pup1 QTLs, respectively, were not significantly different in between Pup1 and SP1 plants. On the other hand, the expression of both Sup1A and PSTOL1 was significantly downregulated in P-deficiency conditions, suggesting that Sub1 and Pup1 repressed gene expression each other in P-deficiency conditions. These results suggest Pup1 does not compromise the Sub1 function in submerged conditions while Sub1 suppresses the function of Pup1 in (P)-deficient condition, possibly by regulating transcript level of Pup1. In conclusion, Sub1 and Pup1 are functionally compatible in terms of submergence tolerance but not in P-deficiency conditions. Further analysis need to be performed to elucidate how Sup1 suppresses the function of Pup1 in P-deficiency conditions.

  • PDF

Characterization of Low-phosphorus Tolerance in an Anthocyanin-deficient Lycopersicon esculentum by tissue culture (조직 배양을 이용한 안토시아닌 결핍 돌연변이 토마토의 저인 내성 평가)

  • Lee, Dong-Hee;Bae, Gong-Young;Park, So-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.174-178
    • /
    • 1999
  • An anthocyanin-deficient tomato (Lycopersicon esculentum Mill.) strain, H957, shows an unusual tolerance to low phosphorus (P). To investigate whether the tolerance originates from a tissue/cellular strength, plant tissue culture procedure was employed which facilitate to characterize the tolerance independent of morphological features. The tolerance was analyzed by comparing H957 against H883, its maternal wild type, while each explant was co-cultured on minimal P media. Comparisons were made in fresh weight, dry weight, callus and shoot formation, mineral contents, and P utilization ratios at $0-400{\cdot}\bar{I}MP$, . Growth of the two strains was severely impaired at 0 and $12.5{\cdot}\bar{I}MP.\;At\;25-200{\cdot}\bar{I}MP$, however, H957 consistently showed a greater fresh and dry weight than H883. Shoot onset of H957 was less delayed than H883 compared to optimal P conditions. H957 tissue contains an overall lower P concentration than H883. These observations indicate that H957 may tolerate to low P by its tissue or cellular strength in P utilization side from its morphology.

  • PDF

Salt tolerance in phosphorus efficient tomato (Lycopersicon esculentum Mill.) (고린(高燐) 활용성 토마토 항 염분 특성)

  • Lee, Dong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.34-38
    • /
    • 1998
  • To test a potential salt tolerance in phosphorus (P) efficient plants (T9 and T8), tomato seedlings were hydroponically grown in saline media. The tolerance was evaluated by comparing growth and metabolism against T5, non-P-efficient variety, at different salt concentrations: 0, 1, 5, 10 g/L. Fresh weights (FW) were measured weekly. Dry weight (DW), mineral contents, and stomatal resistance (Rs) were measured at the termination of experiment. At the lower two salt concentrations (0, 1 g/L), no significant difference was observed in terms of FW, DW, and Rs. At 5, 10 g/L of salt concentration, however, significant variation is evident: T9 and T8 outperformed T5. On the other hand, no difference was also in N, P, K, and Na contents at the corresponding salt concentration. These observations together indicate that P-efficient strain can better tolerate to salinity.

  • PDF

Factors for persistent growth hormone deficiency in young adults with childhood onset growth hormone deficiency (소아청소년기 성장호르몬결핍증의 성인기 지속에 영향을 미치는 요인)

  • Lee, Young Ah;Chung, Hye Rim;Lee, Se Min;Kim, Jae Hyun;Kim, Ji Hyun;Lee, Sun Hee;Shin, Choong Ho;Yang, Sei Won
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.2
    • /
    • pp.227-233
    • /
    • 2009
  • Purpose : Growth hormone (GH) replacement after retesting is necessary because impairment of body composition and cardiovascular health has been more severe in adult patients with persistent GH deficiency (GHD) from childhood to adulthood. This study aimed to investigate the factors for persistent GHD and define a highly probable group of persistent GHD in young adults with childhood-onset GHD. Methods : GHD was reassessed by insulin tolerance test (ITT) in 55 adult patients (39 males, 16 females) with childhood-onset GHD. Twelve patients presented with idiopathic GHD and 43 patients presented with organic GHD caused by tumors involving the hypothalamus-pituitary (H-P) region (n=33), other brain tumors (n=3), meningitis (n=3), leukemia (n=2) and others (n=2). Results : Forty-nine (89.1%) of 55 patients had persistent GHD. IGF-I was positively correlated with log of peak GH (r=0.57, P<0.001). There was no difference in the proportion of persistent GHD between idiopathic and organic GHD. The percentage of patients with persistent GHD was 40%, 80%, and 95.6% for patients with zero, one, two or more additional pituitary hormone deficiencies (PHDs), respectively (P=0.002). The probability of persistent GHD was higher in patients with diseases involving the H-P region (P=0.003). GHD persisted in 15 of 18 patients treated with cranial irradiation. Conclusion : We suggest that the probability of persistent GHD in adulthood was high in patients with 2 or more additional PHDs, and diseases involving the H-P region.

Sigma S Involved in Bacterial Survival of Ralstonia pseudosolanacearum (Ralstonia pseudosolanacearum 생존에 관여하는 Sigma S 역할)

  • Hye Kyung Choi;Eun Jeong Jo;Jee Eun Heo;Hyun Gi Kong;Seon-Woo Lee
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.148-156
    • /
    • 2024
  • Ralstonia pseudosolanacearum, a plant pathogenic bacterium that can survive for a long time in soil and water, causes lethal wilt in the Solanaceae family. Sigma S is a part of the RNA polymerase complex, which regulates gene expression during bacterial stress response or stationary phase. In this study, we investigated the role of sigma S in R. pseudosolanacearum under stress conditions using a rpoS-defective mutant strain of R. pseudosolanacearum and its wild-type strain. The phenotypes of rpoS-defective mutant were complemented by introducing the original rpoS gene. There were no differences observed in bacterial growth rate and exopolysaccharide production between the wild-type strain and the rpoS mutant. However, the wild-type strain responded more sensitively to nutrient deficiency compared to the mutant strain. Under the nutrient deficiency, the rpoS mutant maintained a high bacterial viability for a longer period, while the viability of the wild-type strain declined rapidly. Furthermore, a significant difference in pH was observed between the culture supernatant of the wild-type strain and the mutant strain. The pH of the culture supernatant for the wild-type strain decreased rapidly during bacterial growth, leading to medium acidification. The rapid decline in the wild-type strain's viability may be associated with medium acidification and bacterial sensitivity to acidity during transition to the stationary phase. Interestingly, the rpoS mutant strain cannot utilize acetic acid, D-alanine, D-trehalose, and L-histidine. These results suggest that sigma S of R. pseudosolanacearum regulates the production or utilization of organic acids and controls cell death during stationary phase under nutrient deficiency.

Identification and functional analysis of COLD-signaling-related genes in Panax ginseng

  • Jeongeui Hong;Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.225-231
    • /
    • 2023
  • Cold stress is one of the most vulnerable environmental stresses that affect plant growth and crop yields. With the recent advancements in genetic approaches using Arabidopsis and other model systems, genes involved in cold-stress response have been identified and the key cold signaling factors have been characterized. Exposure to low-temperature stress triggers the activation of a set of genes known as cold regulatory (COR) genes. This activation process plays a crucial role in enhancing the resistance of plants to cold and freezing stress. The inducer of the C-repeatbinding factor (CBF) expression 1-CBF module (ICE1-CBF module) is a key cold signaling pathway regulator that enhances the expression of downstream COR genes; however, this signaling module in Panax ginseng remains elusive. Here, we identified cold-signaling-related genes, PgCBF1, PgCBF3, and PgICE1 and conducted functional genomic analysis with a heterologous system. We confirmed that the overexpression of cold- PgCBF3 in the cbf1/2/3 triple Arabidopsis mutant compensated for the cold stress-induced deficiency of COR15A and salt-stress tolerance. In addition, nuclearlocalized PgICE1 has evolutionarily conserved phosphorylation sites that are modulated by brassinsteroid insensitive 2 (PgBIN2) and sucrose non-fermenting 1 (SNF1)-related protein kinase 3 (PgSnRK3), with which it physically interacted in a yeast two-hybrid assay. Overall, our data reveal that the regulators identified in our study, PgICE1 and PgCBFs, are evolutionarily conserved in the P. ginseng genome and are functionally involved in cold and abiotic stress responses.

LPS Stimulated B Lymphocytes Inhibit the Differentiation of Th1 Lymphocytes (LPS에 의해 자극된 B 림프구에 의한 Th1 림프구 분화 억제)

  • Kim, Ha-Jeong
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1425-1431
    • /
    • 2015
  • The lymphocyte component of the immune system is divided into B lymphocytes and T lymphocytes. B lymphocytes produce antibodies (humoral immunity) via maturation into plasma cells, and T lymphocytes kill other cells or organisms (cellular immunity). A traditional immunological paradigm is that B lymphocyte and T lymphocyte interactions are a one-way phenomenon, with T lymphocytes helping to induce the terminal differentiation of B lymphocytes into immunoglobulin class-switched plasma cells. A deficiency of T lymphocytes was reported to result in defective B lymphocyte function. However, evidence for a reciprocal interaction between B and T lymphocytes is emerging, with B lymphocytes influencing the differentiation and effector function of T lymphocytes. For example, B lymphocytes have been shown to induce direct tolerance of antigen-specific CD8+ T lymphocytes and induce T lymphocytes anergy via transforming growth factor-beta (TGF-β) production. The present study showed that LPS-stimulated B lymphocytes inhibited the differentiation of Th1 lymphocytes by inhibiting the production of interleukin-12 (IL-12) from dendritic cells. An interaction between the B lymphocytes and dendritic cells was not needed for this inhibition, and the B lymphocytes did not alter dendritic cell maturation. B lymphocyte-derived soluble factor (BDSF) suppressed the LPS-induced IL-12p35 transcription in the dendritic cells. Overall, these results point to a novel B lymphocyte- mediated immune suppressive mechanism. The findings cast doubt on the traditional paradigm of immunological interactions involving B lymphocyte and T lymphocyte interactions.

Studies on the Cause and Control for Non-Sprouting in the Mulberry Field of Kyung-pook Province (경북지방의 뽕밭에 발생한 발아불량현상의 원인 및 방제에 관한 연구)

  • Yu, Geun-Seop;Kim, Gyu-Rae;Kim, Nak-Sang
    • Journal of Sericultural and Entomological Science
    • /
    • v.28 no.2
    • /
    • pp.1-8
    • /
    • 1986
  • This study was conducted to bring light on inducing factors for non-sprouting occured in the mulberry field of Kyungpook Province in 1983. The results are as follws ; 1. In spring, winter buds were suddenly died during germination, necrosis appeared in pholem and cortex of non-sprouting stem and measles at the bottom of non-sprouting stem. 2. The depth of available of soil was more shallow in the non-sproutiong field than in healthy field. 3. There was no signifioant difference between the healthy field and non-sprouting field in siol PH, the content of organic matter, available phosphorous and exchangeble cations. 4. Available boron content in soil was significantly more in healthy field than in non-sprouting field. 5. Boron content in leaf and bark was significantly lower in the non-sproutiong tree than in the healthy tree. 6. The non-sprouting fields were completely controlled by the application of 6kg/10a borax. 7. Cold tolerance of the mulberry tree was higher in the mulberry tree with boron than in the mulberry tree without boron. 8. Mulberry tree in Kyungpook Province in 1983 may absorb water earlier compared with the average year because of high temperature at the end of March, 1983 and they had been damaged by frost injuary due to the lowest temperature (-6.4$^{\circ}C$) on the grass at the beginning of April 1983. As the above results, non-sprouting bud in the mulberry fields of Kyungpook Province in 1983 had been occured by low temperature and boron deficiency and boron deficiency of mulberry trees accelerared the frost injury.

  • PDF

Effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women

  • Kim, Ji-Hye;Lee, Sun-Ju
    • Nutrition Research and Practice
    • /
    • v.6 no.3
    • /
    • pp.221-225
    • /
    • 2012
  • Zinc deficiency is known to be associated with insulin resistance in obese individuals. This study was performed to evaluate the effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women. Forty obese women (body mass index (BMI) ${\geq}25kg/m^2$) aged 19-28 years were recruited for this study. Twenty women of the study group took 30 mg/day of supplemental zinc as zinc gluconate for 8 weeks and 20 women of control group took placebo. Usual dietary zinc intake was estimated from 3-day diet records. Insulin resistances were measured using Homeostasis model assessment (HOMA) indices, and insulin sensitivities Matsuda indices, which were calculated using oral glucose tolerance test data. Metabolic risk factors, such as waist circumference, blood pressure, fasting glucose, triglyceride, high density lipoprotein (HDL) cholesterol, and adipocyte hormones such as leptin, and adiponectin were also measured. At the beginning of study, dietary zinc averaged 7.31 mg/day and serum zinc averaged $12.98{\mu}mol/L$ in the study group. Zinc supplementation increased serum zinc by 15% and urinary zinc by 56% (P < 0.05). HOMA values tended to decrease and insulin sensitivity increased slightly in the study group, but not significantly so. BMI, waist circumference, blood pressure, blood glucose, triglyceride, HDL cholesterol, and adipocyte hormones did not change in either the study or control group. These results suggest that zinc status may not affect insulin resistance and metabolic risk factors in obese Korean women. Further research is required on a larger cohort with a longer follow-up to determine the effects of zinc status on insulin resistance and metabolic variables.

Impacts of Air Pollution on Forests : A Summary of Current Situations (대기오염이 삼림에 미치는 영향 : 피해현황과 원인을 중심으로)

  • Binkley, Dan;Son, Yowhan;Kim, Zin Suh
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.229-238
    • /
    • 1994
  • Issues of declining growth and vigor in forests are major concerns in many areas around the world, especially in response to predictions in the 1980s of widespread forest declines. This paper summarizes the current state of knowledge for forests in North America, Europe, and East Asia. Forest declines near point-sources of pollution(such as metal smelters) have been well recognized for a century, but evidence of widespread impacts away from point-sources remains relatively uncommon. In North America, significant forest decline has resulted from high concentrations of ozone near Los Angeles, California, and around Mexico City. Some high-elevation forests of red spruce in the eastern U.S. have declined in the past 20 years ; evidence indicates a role of low-pH fog in reducing they cold-tolerance of spruce. In Europe. most attention has focused on Norway spruce stands that developed yellow foliage, needle loss, and in some cases mortality. This syndrome appears to be related generally to an inadequate supply of magnesium, perhaps coupled with a very high supply of nitrogen. Despite localized areas that show declining trees, overall stand growth and standing biomass in Europe increased from. 1970 to 1990. Much less information is available for East Asia. Many industrialized regions in China have a pH of rain <4.5, and some connections between pollution and forest decline have been suggested. Pollution impacts on forests near cities in Korea include needle chlorosis, reduced needle retention, and declining species diversity. Overall, temperate forests show no widespread declines, and no evidence of substantial effects of pollutants on forest growth or vigor. Small areas showing declining forests may indeed demonstrate pollution impacts, and may provide cause for concerns about future impacts on larger areas.

  • PDF