• Title/Summary/Keyword: P-Grid

Search Result 383, Processing Time 0.182 seconds

Adaptive Mesh Refinement Using Viscous Adjoint Method for Single- and Multi-Element Airfoil Analysis

  • Yamahara, Toru;Nakahashi, Kazuhiro;Kim, Hyoungjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.601-613
    • /
    • 2017
  • An adjoint-based error estimation and mesh adaptation study is conducted for two-dimensional viscous flows on unstructured hybrid meshes. The error in an integral output functional of interest is estimated by a dot product of the residual vector and adjoint variable vector. Regions for the mesh to be adapted are selected based on the amount of local error at each nodal point. Triangular cells in the adaptive regions are refined by regular refinement, and quadrangular cells near viscous walls are bisected accordingly. The present procedure is applied to single-element airfoils such as the RAE2822 at a transonic regime and a diamond-shaped airfoil at a supersonic regime. Then the 30P30N multi-element airfoil at a low subsonic regime with a high incidence angle (${\alpha}=21deg.$) is analyzed. The same level of prediction accuracy for lift and drag is achieved with much less mesh points than the uniform mesh refinement approach. The detailed procedure of the adjoint-based mesh refinement for the multi-element airfoil case show that the basic flow features around the airfoil should be resolved so that the adjoint method can accurately estimate an output error.

A DQ nonlinear bending analysis of skew composite thin plates

  • Malekzadeh, P.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.161-180
    • /
    • 2007
  • A first endeavor is made to exploit the differential quadrature method (DQM) as a simple, accurate, and computationally efficient numerical tool for the large deformation analysis of thin laminated composite skew plates, which has very strong singularity at the obtuse vertex. The geometrical nonlinearity is modeled by using Green's strain and von Karman assumption. A recently developed DQ methodology is used to exactly implement the multiple boundary conditions at the edges of skew plates, which is a major draw back of conventional DQM. Using oblique coordinate system and the DQ methodology, a mapping-DQ discretization rule is developed to simultaneously transform and discretize the equilibrium equations and the related boundary conditions. The effects of skew angle, aspect ratio and different types of boundary conditions on the convergence and accuracy of the presented method are studied. Comparing the results with the available results from other numerical or analytical methods, it is shown that accurate results are obtained even when using only small number of grid points. Finally, numerical results for large deflection behavior of antisymmetric cross ply skew plates with different geometrical parameters and boundary conditions are presented.

Line-Interactive UPS for Low-Voltage Microgrids

  • Zhang, Ping;Cai, Huanyu;Zhao, Hengyang;Shi, Jianjiang;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1628-1639
    • /
    • 2015
  • Line-interactive uninterruptible power supply (UPS) systems are good candidates for providing energy storage within a microgrid. In this paper, a control scheme for a line-interactive UPS system applied in a low-voltage microgrid is presented. It is based on the Q-w and P-E droop control to achieve a seamless transition between grid-connected and stand-alone operation modes. Moreover, a new model for designing the controllers is built in the dq-frame based on the instantaneous power definition. The new-built model takes into account the dynamic performance of the output impedance of the inverter in the dq-frame and can be evaluated in the time domain. Compared to the traditional model based on the instantaneous power definition, the new-built model is more accurate to describe the dynamic performance of the system. Simulation and experimental results obtained with a microgrid consisting of two 40-kW line-interactive UPS systems are given to validate the control strategy of the line-active UPS system and the accuracy of the new-built model.

Measurement and assessment of imperfections in plasma cut-welded H-shaped steel columns

  • Arasaratnam, P.;Sivakumaran, K.S.;Rasmussen, Kim J.R.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.531-555
    • /
    • 2006
  • H-shaped welded steel column members are fabricated by welding together pre-cut flanges and the web. Modern fabricators are increasingly using plasma-cutting technique instead of traditional flame cutting. Different fabrication techniques result in different degrees of geometric imperfections and residual stresses, which can have considerable influence on the strength of steel columns. This paper presents the experimental investigation based temperature profiles, geometric imperfections, and built-in residual stresses in plasma cut-welded H-shaped steel column members and in similar flame cut-welded H-shaped steel columns. Temperature measurements were taken during and immediately after the cutting operations and the welding operations. The geometric imperfections were established at closely spaced grid locations on the original plates, after cutting plates into plate strips, and after welding plate strips into columns. Geometric imperfections associated with plasma cut element and members were found to be less than those of the corresponding elements and members made by flame cutting. The "Method of Section" technique was used to establish the residual stresses in the plate, plate strip, and in the welded columns. Higher residual stress values were observed in flame cut-welded columns. Models for idealized residual stress distributions for plasma cut and flame cut welded sections have been proposed.

Multi-level Modeling and Simulation for Sustainable Energy (대체 에너지의 다중레벨 모델링과 시뮬레이션)

  • van Duijsen, P.J.;Oh, Yong-Taek
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • Modeling and simulation for Green Energy depends largely on the type of system under investigation. The topics are very wide ranging from semiconductor physics (solar), electrical motor/generator (wind turbines), power electronics (grid connections) to typical control strategies. To correctly model these technologies requires a broad set of models and various simulation techniques. To further refine or detail the simulation the modeling has to be performed on a specific level, being system, circuit or component level. Combinations of several levels allows gradually improving the validity of the overall model against available parameters and model equations.

  • PDF

Fabrication and Properties of MIS Inversion Layer Solar Cell using $Al_2O_3$ Thin Film ($Al_2O_3$ 박막을 이용한 MIS Inversion Layer Solar Cell의 제작 및 특성평가)

  • Kim, Hyun-Jun;Byun, Jung-Hyun;Kim, Ji-Hun;Jeong, Sang-Hyun;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.242-242
    • /
    • 2010
  • 산화 알루미늄($Al_2O_3$) 박막을 p-type Czochralski(CZ) Si 위에 Remote Plasma Atomic Layer Deposition(RPALD)을 이용하여 저온 공정으로 증착하였다. Photolithography 공정으로 grid 패턴을 형성한 후 열 증착기로 알루미늄을 증착하여 MIS-IL (Metal-Insulator-Semiconductor Inversion Layer) solar cell을 제작하였다. 반응소스로는 Trimethylaluminum (TMA)과 $O_2$를 이용하였다. $Al_2O_3$ 박막의 전기적 특성 평가를 위해 MIS capacitor를 제작하여 Capacitance-voltage (C-V), Current-voltage (I-V), Interface state density ($D_{it}$)를 평가하였으며 Solar simulator를 이용하여 MIS-IL Solar cell의 Efficiency을 측정하였다.

  • PDF

A Modified SDB Technology and Its Application to High-Power Semiconductor Devices (새로운 SDB 기술과 대용량 반도체소자에의 응용)

  • Kim, E.D.;Park, J.M.;Kim, S.C.;Min, M.G.;Lee, Y.S.;Song, J.K.;Kostina, A. L.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.348-351
    • /
    • 1995
  • A modified silicon direct bonding method has been developed alloying an intimate contact between grooved and smooth mirror-polished oxide-free silicon wafers. A regular set of grooves was formed during preparation of heavily doped $p^+$-type grid network by oxide-masking und boron diffusion. Void-free bonded interfaces with filing of the grooves were observed by x-ray diffraction topography, infrared, optical. and scanning electron microscope techniques. The presence of regularly formed grooves in bending plane results in the substantial decrease of dislocation over large areas near the interface. Moreover two strongly misoriented waters could be successfully bonded by new technique. Diodes with bonded a pn-junction yielded a value of the ideality factor n about 1.5 and the uniform distribution of series resistance over the whole area of horded pn-structure. The suitability of the modified technique was confirmed by I - V characteristics of power diodes and reversly switched-on dynistor(RSD) with a working area about $12cm^2$. Both devices demonstrated breakdown voltages close to the calculation values.

  • PDF

A Study on the Participation of Virtual Power Plant Based Technology Utilizing Distributed Generation Resources in Electricity Market (분산발전자원을 활용한 가상발전소 기반 기술의 전력시장 참여 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • A virtual power plant (VPP) technology is a cluster of distributed generation installations. VPP system is that integrates several types of distributed generation sources, so as to give a reliable overall power supply. Virtual power plant systems play a key role in the smart grids concept and the move towards alternative sources of energy. They ensure improved integration of the renewable energy generation into the grids and the electricity market. VPPs not only deal with the supply side, but also help manage demand and ensure reliability of grid functions through demand response (DR) and other load shifting approaches in real time. In this paper, utilizing a variety of distributed generation resources(such as emergency generator, commercial generator, energy storage device), activation scheme of the virtual power plant technology. In addition, through the analysis of the domestic electricity market, it describes a scheme that can be a virtual power plant to participate in electricity market. It attempts to derive the policy support recommendation in order to obtain the basics to the prepared in position of power generation companies for the commercialization of virtual power plant.

The characteristic analysis of POS (PV Output Sensorless) MPPT based 3 phase grid connected PV system (PV Output Sensorless(POS) MPPT법이 적용된 3상 계통연계형 태양광 발전시스템의 특성해석)

  • Park, Sang-Soo;Kim, Gyeong-Hun;Kim, Sang-Yong;Jang, Seong-Jae;Seo, Hyo-Ryong;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1081-1082
    • /
    • 2008
  • Photovoltaic (PV) power generation system has been widely studied as a clean and renewable power source. The purpose of this study is to keep the output power of photovoltaic cells maximum under any weather conditions. There are so many MPPT (Maximum Power Point Tracking) methods. P&O method has been used as a key MPPT method, both voltage and current coming out from PV array have to be feedback in the method. Thus, the system has a complex structure, and may fail to track MPP of PV array when unexpected weather conditions happen. In order to reduce the feedback components, POS MPPT control method was proposed by the authors. In this paper, the authors apply the POS MPPT control method to three phase PCS system. And the effectiveness of the proposed control scheme is demonstrated through PSCAD/EMTDC simulation.

  • PDF

Assessment of Transmission Losses with The 7th Basic Plan of Long-term Electricity Supply and Demand (7차 전력수급계획에 따른 송전계통 손실 분석에 관한 연구)

  • Kim, Sung-Yul;Lee, Yeo-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.112-118
    • /
    • 2018
  • In recent years, decentralized power have been increasing due to environmental problems, liberalization of electricity markets and technological developments. These changes have led to the evolution of power generation, transmission, and distribution into discrete sectors and the division of integrated power systems. Therefore, studies are underway to efficiently supply power and reduce losses to each sector's demand. This is a major concern for system planners and operators, as it accounts for a relatively high proportion of total power, with a transmission and distribution loss of 4-6%. Therefore, this paper analyzes the status of loss management based on the current transmission and distribution loss rate of each country and transmission loss management cases of each national power company, and proposes a loss rate prediction algorithm according to the long-term transmission system plan. The proposed algorithm predicts the demand-based long-term evolution and the loss rate of the grid to which the transmission plan is applied.