• Title/Summary/Keyword: P velocity

Search Result 1,893, Processing Time 0.031 seconds

Variation of Cone Crack Shape and Impact Damage According to Impact Velocity in Ceramic Materials (세라믹에서 충격속도에 따른 충격손상 및 콘크랙 형상의 변화)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.383-388
    • /
    • 2001
  • Effects of particle property variation of cone crack shape according to impact velocity in silicon carbide materials were investigated. The damage induced by spherical impact having different material and size was different according to materials. The size of ring cracks induced on the surface of specimen increased with increase of impact velocity within elastic contact conditions. The impact of steel particle produced larger ring cracks than that of SiC particle. In case of high impact velocity, the impact of SiC particle produced radial cracks by the elastic-plastic deformation at impact regions. Also percussion cone was formed from the back surface of specimen when particle size become large and its impact velocity exceeded a critical value. Increasing impact velocity, zenithal angle of cone cracks in SiC material was linearly decreasing not effect of impact particle size. An empirical equation, $\theta=\theta_{st}-\upsilon_p(180-\theta_{st})(\rho_p/\rho_s)^{1/2}/415$, was obtained from the test data as a function of quasi-static zenithal angle of cone crack($\theta_{st}$), the density of impact particle(${\rho}_p$) and specimen(${\rho}_s$). Applying this equation to the another materials, the variation of zenithal angle of cone crack could be predicted from the particle impact velocity.

  • PDF

A Study on S-wave Reflection method for the assessment of physical property of dam body (댐체 물성 평가를 위한 S파 반사법에 관한 연구)

  • Kim, Hyoung-Soo;Kim, Jung-Yul;Ha, Ik-Soo;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.392-399
    • /
    • 2005
  • Shear modulus (or rigidity) of dam material is an important parameter which can be directly associated with the deformation of dam. Seepage or leakage of water can cause the defects or cracks of dam body. The existence of cracks and rigidity of dam body are decisive information for the estimation of dam safety. Rigidity of material is mainly determined from S-wave velocity and the defects of dam body can be detected by seismic reflection survey. Therefore, seismic reflection survey will be a desirable method which can give a solution about dam safety problem. Among various physical properties of dam body, S-wave velocity is the most important information but it is not easy to get the information. In this study, diverse measuring techniques of S-wave reflection survey were attempted to get the information about S-wave velocity of dam body. Ultimately, S-wave velocity could be estimated by the analysis of SH reflection events which can be easily observed in shot gather data obtained from SH measuring technique. Meanwhile, P-wave reflection survey was also performed at the same profile. P-beam radiation technique which can reduce the surface waves and reinforce the P-wave reflection events was applied for giving a help to analyse P-wave velocity. In the end, P-and S-wave velocity, Vs/Vp, Poisson's ratio distribution of the vertical section under the profile could be acquired.

  • PDF

Mean Velocity of Globular Cluster Systems in M86 Virgo Giant Elliptical Galaxy and Massive Early-Type Galaxies

  • Park, Hong Soo;Lee, Myung Gyoon;Arimoto, Nobuo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.33.3-34
    • /
    • 2015
  • We present the spectroscopic study of the globular clusters (GCs) in the massive elliptical galaxy M86 in the Virgo galaxy cluster. Using the spectra obtained from the Multi-Object Spectroscopy (MOS) mode of Faint Object Camera and Spectrograph (FOCAS) on the Subaru Telescope, we measure the radial velocities for 56 GCs in M86. The mean velocity of the GCs is derived to be $<v_p>=-335{\pm}41km/s$, which is different from the velocity of the M86 nucleus ($<v_{gal}>=-224{\pm}5km/s$) within ${\sim}2.5{\sigma}$. The mean velocity ($<v_p>=-342{\pm}60km/s$) of 33 blue GCs in M86 is similar to that ($<v_p>=-314{\pm}71km/s$) of 23 red GCs. We also derive the mean velocities of the GC systems in other 16 nearby early-type galaxies (ETGs) from the radial velocity data in the literature. The mean value of the differences between the mean velocity of the GC systems in each galaxy and the nucleus velocity of their host galaxies, is almost zero except the M86 GC system. But the scatter of the differences in the blue GC system is larger than that in the red GC system. We will discuss these results in the context of GC formation in ETGs.

  • PDF

Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes (비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구)

  • Sakai, Akio
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

A Biomechanical Gait Analysis of Patients with Parkinson's Disease by Auditory Cues Velocity (청각 신호 속도에 따른 파킨슨병 환자의 생역학적 보행 분석)

  • Kim, Eun-Jung;Han, Jin-Tae;Jung, Jae-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • PURPOSE: The purpose of this study was to determine if auditory cues velocity has a greater effect on the gait pattern of patients with Parkinson's disease (PD) than the cues applied individually. METHODS: The subjects were 15 elderly patients diagnosed with PD, 15 healthy elderly persons. Patients were measured of three conditions performed in random order: slow, general, fast. The auditory cue velocity consisted of a metronome beat ${\pm}20%$ than the subject's general gait speed. Using a motion analysis and a force platform measurement system, changes in spatiotemporal variables, kinetic and kinematic variables were compared to gait analysis. RESULTS: Comparison between the auditory cues velocity, there was a significant difference in the spatiotemporal variables with regard to the cadence, stride length, support time, step length, double support time (p<.05). Comparison between the auditory cues velocity, there was a significant increase general and fast velocity gait than slow velocity gait in the maximum flexion in swing phase of knee joint (p<.05). There appears to be the aspect of an increasing ground reaction force (GRF) on the first peak in the vertical axis (p<.05). CONCLUSION: Auditory cues velocity improved of spatio-temporal factors, kinematic and kinetic factors depending on the velocity of the faster. Therefore at the rehabilitation training of PD patients auditory cues velocity would be used for recovery and gait reeducation, may arise through the patients functional ability.

Correlation between Gait Speed and Velocity of Center of Pressure Progression during Stance Phase in the Older Adults with Cognitive Decline: A Pilot Study

  • Seon, Hee-Chang;Lee, Han-Suk;Ko, Man-Soo;Park, Sun-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE: The progression of the center of pressure (COP) velocity of the stance phase may have important roles for predicting gait speed in older adults with cognitive decline. This study was conducted to identify the correlation between gait speed and the velocity of COP progression during the stance phase in older adults with cognitive decline. METHODS: Forty adults aged 65 years or older (twenty participants without cognitive decline, 20 participants with cognitive decline) were recruited. The COP progression velocity was measured using an F-scan pressure-sensitive insole system. The stance phase was divided into four sub-stages. (loading response, mid-stance, terminal stance, and pre-swing). Gait speed, double support phase, and cadence were also measured. Correlations and multiple regression analyses were performed. RESULTS: Gait speed was associated with the COP progression velocity in midstance (r = .719, p < .05), cadence (r = .719, p < .05) and the COP progression velocity in loading response velocity (r = .515, p < .05) in older adults with cognitive decline. However, no correlation was found in older adults without cognitive decline. In multiple regression analysis using gait speed as a dependent variable, the COP progression velocity in midstance and cadence were significant predictors of gait speed, with the COP progression velocity being the most significant predictor. CONCLUSION: The COP progression velocity is an important factor for predicting gait speed in older adults with cognitive decline, suggesting that the cognitive function influences gait speed and the velocity of COP progression.

The Effect of Mechanical Horseback-Riding Training Velocity on Vestibular Functions and Static Postural Balance in Healthy Adults (승마기구의 훈련속도가 정상성인의 안뜰기능과 정적자세 균형에 미치는 영향)

  • Lim, Jae-Heon;Park, Jang-Sung;Cho, Woon-Su
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.288-296
    • /
    • 2013
  • Purpose: This study was conducted in order to determine whether mechanical horseback-riding training depending on velocity can improve vestibular function and static postural balance on standing in healthy adults. Methods: For evaluation of vestibular function, electrooculography (EOG) of vertical and horizontal was performed for identification of the motion of eyes. For evaluation of static postural balance, COP distance, time spent on the sharpened Romberg test with neck extension (SRNE) were measured. Measurements were performed three times before training, three weeks after training, and six weeks after training. Participants were randomly assigned to three groups: fast velocity-mechanical horse -riding training (FV-MHRT, n=12), moderate velocity-mechanical horse-riding training (MV-MHRT, n=12), and slow velocity-mechanical horse-riding training (SV-MHRT, n=12). Results: According to the result for vertical, horizontal EOG, there was significant interaction in each group in accordance with the experiment time (p<0.05). The FV-MHRT group showed a significant decrease compared with the MV- MHRT, SV-MHRT groups (p<0.05). According to the result for static postural balance, the time spent, COP distance in SRNE showed significant interaction in each group in accordance with the experiment time (p<0.05). The time spent on the SRNE showed a significant increas in FV-MHRT, SV-MHRT (p<0.05). The COP distance of SRNE showed a significant increase in MV-MHRT (p<0.05). Conclusion: The MHRT velocity activated mechanism of vestibular spinal reflex (VSR), vestibular ocular reflex (VOR), also helped to strengthen vestibular function and static postural balance. In addition, it should be applied to different velocity of MHRT according to the specific purpose.

A Study for the Construction of the P and S Velocity Tomogram from the Crosswell Seismic Data Generated by an Impulsive Source (임펄시브 진원에 의한 공대공 탄성파기록으로부터 P파, S파 속도 영상도출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 2003
  • Crosswell seismic data were acquired in three sections crossing a tunnel of 3 different types; one was empty, another was ailed by sand, and the other was filled by rock debris. Both the P- and S-wave first arrivals were picked and the traveltime tomography was conducted to generate the P- and S- wave velocity tomograms on the all three sections. Among six tomograms, only one tomogram shows a low velocity zone that can be interpreted as a tunnel image. The tomogram is the P wave velocity image of a section that crosses an empty tunnel. The result of numerical analysis for the spatial resolution of the traveltime tomography was consistent to this finding.

A Study on the Lift Flame Structure with Composition Ratios in Premixed Impinging Jet Flames of Syngas (H2/CO) (합성가스(H2/CO) 예혼합 충돌 제트화염에서 조성비에 따른 부상 화염구조에 관한 연구)

  • KIM, SEULGI;SIM, KEUNSEON;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.220-229
    • /
    • 2016
  • A numerical study on lifted flame structure in impinging jet geometry with syngas composition ratio was investigated. The numerical calculations including chemical kinetic analysis were conducted using SPIN application of the CHEMKIN Package with Davis-Mechanism. The flame temperature and velocity profiles were calculated at the steady state for one-dimensional stagnation flow geometry. Syngas mixture compositions were adjusted such as $H_2:CO=10:90(10P)$, 20 : 80 (20P), 30 : 70 (30P), 40 : 60 (40P), 50 : 50 (50P). As composition ratios are changed from 10P to 50P, the axial velocity and flame temperature increase because the contents of hydrogen that have faster burning velocity increase. This phenomenon is due to increase in good reactive radicals such as H, OH radical. As a result of active reactivity, the burning velocity is more faster and this is confirmed by numerical methods. Consequently, combustion reaction zone was moved to burner nozzle.

Laboratory study of $CO_2$ migration in water-saturated anisotropic sandstone, based on P-wave velocity imaging (P-파 속도 영상화에 근거한 물로 포화된 이방성 사암에서의 $CO_2$ 이동에 관한 실험 연구)

  • Xue, Ziqiu;Lei, Xinglin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • We measured the changes in P-wave velocity that occur when injecting $CO_2$ in gaseous, liquid, and supercritical phases into water-saturated anisotropic sandstones. P-wave velocities were measured in two cylindrical samples of Tako Sandstone, drilled along directions normal and parallel to the bedding plane, using a piezo-electric transducer array system. The velocity changes caused by $CO_2$ injection are typically -6% on average, with maximum values about -16% for the case of supercritical $CO_2$ injection. P-wave velocity tomograms obtained by the differential arrival-time method clearly show that $CO_2$ migration behaviour is more complex when $CO_2$ flows normal to the bedding plane than when it flows parallel to bedding. We also found that the differences in P-wave velocity images were associated both with the $CO_2$ phases and with heterogeneity of pore distribution in the rocks. Seismic images showed that the highest velocity reduction occurred for supercritical $CO_2$ injection, compared with gaseous or liquid $CO_$ injection. This result may justify the use of the seismic method for $CO_2$ monitoring in geological sequestration.