• Title/Summary/Keyword: P solubility

Search Result 940, Processing Time 0.033 seconds

Calcination Condition for Recovery of Calcium from Cuttle Bone and Characteristics of Calcined Cuttle Bone Powder (갑오징어갑으로부터 칼슘의 회수조건 및 소성 칼슘의 특성)

  • CHO Moon-Lae;HEU Min-Soo;KIM Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.600-604
    • /
    • 2001
  • For the effective utilization of cuttle bone as a calcium powder, we examined calcination condition ($700^{\circ}C: 0\sim10\;hrs,\;800^{\circ}C:\;0\sim3\;hrs,\;900^{\circ}C:\;0\sim1\;hr\;and\;1,000^{\circ}C:\;0\sim30\;mins$) for recovery of calcium from raw cuttle bone powder (RCB) and characteristics of calcined cuttle bone powder (CCB) treated by optimal condition. During calcination of RCB, the yields was decreased, while total and soluble calcium contents and white index were increased up to constant calcination time ($8\;hrs\;at\;700^{\circ}C,\;2\;hrs\;at\;800^{\circ}C,\;45\;min\;at\;900^{\circ}C\;and\;20\;min\;at\;1,000^{\circ}C$). But, these after that almost unchanged. From these results, the optimal calcination conditions for recovery of calcium from RCB were revealed $8\;hrs\;at\;700^{\circ}C,\;2\;hrs\;at\;800^{\circ}C,\;45\;min\;at\;900^{\circ}C\;and\;20\;min\;at\;1,000^{\circ}C$. In the case of CCB treated for 2 hrs at $800^{\circ}C$, total calcium was about $70\%$, the major component was calcium oxide, and the structure consisted of porosity. The calcium solubility of CCB increased by 22 times compared to RCB. But, the pH of RCB was about 12.9. Therefore, for the effective utilization of RCB as a calcium powder, it requires a suitable modification operation for adjustment of pH ($pH\;2.0\~9.0$).

  • PDF

Physicochemical Properties and Hot Air-Dried and Spray-Dried Powders Process of Sweet Potato and Steamed Sweet Potato (열풍건조 및 분무건조 공정을 이용한 생 고구마와 찐 고구마 분말제조 및 물리화학적 품질특성)

  • Gu, Yul-Ri;Chae, Ho-Yong;Hong, Joo-Heon
    • Journal of Chitin and Chitosan
    • /
    • v.22 no.2
    • /
    • pp.110-117
    • /
    • 2017
  • This study was conducted to examine the physicochemical properties and hot air-dried and spray-dried powders process of sweet potato and steamed sweet potato. The moisture and the total starch contents were 1.66~2.19% and 52.65~57.42%, respectively. The total starch contents increased during process steaming. The water absorption index of the spray-dried powders (0.97 and 2.03) was lower than that of the hot air-dried powders (2.12 and 4.71), and the water solubility index of the spray-dried powders (83.83 and 86.95%) was higher than that of the hot air-dried powders (68.40 and 81.21%). The particle size and outer topology of the spray-dried powders were 46.18 and $65.53{\mu}m$, and its shape was generally globular. In the DSC analysis of this study, the $T_o$ of the spray-dried powders (64.40 and $67.80^{\circ}C$), $T_p$ of the spray-dried powders (74.40 and $78.20^{\circ}C$), and $T_c$ of the spray-dried powders (81.10 and $81.60^{\circ}C$) was higher than that of the hot air-dried powders. The solubility contents of the spray-dried powders (68.21 and 80.73%) was lower than that of the hot air-dried powders, and the swelling power contents of the spray-dried powders (14.79 and 15.35%) was higher than that of the hot air-dried powders. The amylose contents of spray-dried powders (11.67 and 12.51%) was lower than that of the hot air-dried powders. The soluble dietary fiber contents of spray-dried powders (1.34 and 2.02%) was higher than that of the hot air-dried powders.

Simultaneous Removal of SOx and NOx in Flue Gas of Oxy-fuel Combustion by Direct Contact Condenser (직접접촉식 응축기를 통한 가압순산소 연소 배가스 내 SOx, NOx 동시저감 연구)

  • Choi, Solbi;Mock, Chinsung;Yang, Won;Ryu, Changkook;Choi, Seuk-Cheon
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • Pressurized oxy-fuel combustion is a promising technology for $CO_2$ capture with a benefit of improving power plant efficiency compared with atmospheric oxy-fuel combustion. Prior to $CO_2$ compression in this process, a flue gas condenser (FGC) is used to remove $H_2O$ while recovering the latent heat. At the same time, the FGC has a potential for high-efficiency removal of $SO_x$ and $NO_x$ by exploiting their good solubility in water. In this study, experiments were carried out in a lab-scale, direct contact FGC under different pressures varying between 1 and 20 bar to evaluate the removal efficiency of $SO_2$ and $NO_x$ for individual gases and their mixture. In the tests for individual gases, 20% and 76% of $NO_x$ was removed at 1 bar and 10 bar, respectively. Even higher removal efficiencies were achieved for $SO_2$, and also these were maintained for longer as the pressure increased. In the tests for $SO_2$ and $NO_x$ mixture, the removal efficiency of $NO_x$ increased from 13% at 1 bar to 56% at 20 bar because of higher solubility at elevated pressures. $SO_2$ in the mixture was initially dissolved almost completely and then increased by 1,219 ppm at 1 bar and by 165 ppm at 20 bar. Overall, the removal efficiency of $SO_2$ and $NO_x$ was increased at elevated pressures, but it was lower in the mixture compared with individual gases at identical conditions because of a lower pH and associated chemical reactions in water.

Particle-size Effect of Silicate Fertilizer on Its Solubility and Mobility in Soil (토양(土壤)에 처리한 광재규산질비료의 입도별(粒度別) 용해도(溶解度) 및 이동성(移動性))

  • Yoo, Sun-Ho;Park, Lee-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.2
    • /
    • pp.57-63
    • /
    • 1980
  • The effect of particle size of silicate fertilizer, crushed slag from the steel industry, on the behavior of silicate in soil was investigated through laboratory experiments. The silicate fertilizer was sieved to obtain three fractions of particles, coarser than 10 mesh 20-35 mesh, and finer than 100 mesh. Silicate concentration of the extract obtained by shaking 20 mg of particles, coarser than 10 mesh, 20-35 mesh, and finer than 100 mesh, in 50 ml of distilled water for 4 hours was 0.3, 1.0, and 3.2 ppm respectively. As shaking the mixture of the silicate fertilizer and soil proceeded, silicate concentration of the extract increased, and this increase after 4 hour shaking was attributed mainly to dissolution of soil silicate. When the mixture of soil and the silicate fertilizer was incubated under submerged condition, silicate concentration of the solution decreased for the first 2-4 weeks, thereafter increased with incubation time. During this incubation period, silicate concentration of the solution changed inversely with pH of the solution. After 6-10 weeks, however, both silicate concentration and pH of the solution increased with incubation time. Silicate concentration of the effluent from the 14.5 cm soil column of which top 4.5 cm was packed with the mixture of 30 g of soil and 30 mg of the silicate fertilizer reached maximum at 0.94 pore volumes for the particles of 20-35 mesh and 1.03 pore volumes for the particles finer than 100 mesh, whereas the effluent concentration reached maximum at 0.88 pore volumes for the soil column without the silicate fertilizer treatment. Soil analysis made after water percolation revealed that 1.5 pore volumes of water could leach down large amount of the water soluble silicate but not the sodium acetate extractable silicate, from top 3-6 cm soil layer.

  • PDF

THE EFFECT OF ND:YAG LASER IRRADIATION ON THE FORMATION OF CALCIUM FLUORIDE AND ACID RESISTANCE OF TOOTH ENAMEL (Nd:YAG 레이저 조사가 Calcium Fluoride 형성 및 치아 내산성에 미치는 영향)

  • Lee, Jae-Ho;Sohn, Heung-Kyu;Kim, Seong-Oh;Park, Kwang-Kyun;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.377-398
    • /
    • 1999
  • Calcium fluoride, created by topical fluoride application, is the reservoir for fluoride ion regulated by pH in the oral environment. Therefore, the amount and the maintenance of calcium fluoride have an important role in preventing dental caries. The aim of this study is to evaluate the effect of Nd:YAG laser irradiation on the generation of calcium fluoride and the acid resistance of tooth enamel. The bovine anterior permanent teeth were prepared (n=276), and divided into following groups : no treatment (control) fluoride application alone, laser irradiation alone, laser irradiation after fluoride application, and fluoride application after laser irradiation. And each group was subdivided based on the application time of 1.23% acidulated phosphate fluoride (APF) (5 min and 30 min) and the irradiation energy of Nd:YAG laser ($20J/cm^2\;and\;40J/cm^2$). In case of fluoride application, each group was divided according to KOH treatment. Twenty three treatment conditions were made for this experiment and twelve specimens were assigned to each treatment condition. In each treatment condition, ten specimens were used for chemical analysis and two specimens were observed under SEM. In groups without treating KOH, fluoride content and the depth of enamel dissolved were measured using enamel biopsy technique. In groups with treating KOH, the amount of calcium fluoride was measured by the treatment with 1 M KOH for 24 hours and enamel biopsy was performed after KOH treatment. The results were analyzed by the fluoride content and the depth of enamel dissolved by enamel biopsy, amount and thickness of calcium fluoride, and the surface structures of enamel. The results are as follows: 1. In groups without treating KOH, the fluoride content of removed enamel showed a positive relationship with the energy density of laser when the laser irradiated before fluoride application 2. In groups without treating KOH, the depth of enamel dissolved decreased more with the combined laser and fluoride treatment than with laser or fluoride treatment, except for the case of $20J/cm^2$ laser irradiation after 5 minute fluoride application (p<0.05). 3. The amount of calcium fluoride did not increased by laser treatment with no statistical significance(p>0.05). 4. The particle size of calcium fluoride increased in case of fluoride treatment after laser irradiation, compared with fluoride application alone. In case of laser treatment after fluoride application, the particle size of calcium fluoride increased and some of the particles fused as well. 5. There were no significant differences in the fluoride content of dissolved enamel between groups without treating KOH and control group, except for the case of laser irradiation after treatment of APF for 30 minutes (p>0.05). 6. In groups with treating KOH, depth of removed enamel in the groups of combined treatment with laser and fluoride was shallower than that in fluoride application groups (p<0.05). 7. In groups without treating KOH, the relationship between fluoride content and the depth of enamel dissolved showed more negative (Spearman correlation coefficient: -0.6281) than in groups with treating KOH (Spearman correlation coefficient: -0.3792). The greater amount of calcium fluoride could be found in case where there was a significant differences of the depth of enamel dissolved between groups with and without treating KOH. From these results, it can be concluded that laser seems to be a little effects on the amount of calcium fluoride formation, but has some effect on the lowering the solubility of calcium fluoride. As the combined treatment of laser and fluoride application showed more effective acid-resistant property, more extended recall period for fluoride application can be achieved with this combined treatment in the clinic.

  • PDF

Efficiency of Poultry Manure Biochar for Stabilization of Metals in Contaminated Soil (계분 바이오차를 이용한 토양 중금속 안정화 효율 평가)

  • Lim, Jung Eun;Lee, Sang Soo;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.39-50
    • /
    • 2015
  • Stabilization of heavy metals such as Pb, Cd, Zn, and Cu was evaluated in contaminated soil treated with poultry manure (PM) as well as its biochars pyrolyzed at $300^{\circ}C$ (PBC300) and $700^{\circ}C$ (PBC700) at the application rates of 2.5, 5.0, and 10.0 wt% along with the control, prior to 21-days incubation. After incubation, soil pH was increased from 6.94 (control) to 7.51, 7.24, and 7.88 in soils treated with PM 10 wt%, PBC300 10 wt%, and PBC700 10 wt% treatments, respectively, mainly due to alkalinity of treatments. In the soil treated with PM, the concentrations of the toxicity characteristic leaching procedure (TCLP)-extractable Pb, Cd, Zn, and Cu were increased by up to 408, 77, 24, and 955%, respectively, compared to the control. These increases may possibly be associated with an increased dissolved organic carbon concentration by the PM addition. However, in the soil treated with PBC700, TCLP-extractable Pb, Cd, Zn, and Cu concentrations were reduced by up to 23, 38, 52, and 36%, respectively, compared to the control. Thermodynamic modelling using the visual MINTEQ was done to predict the precipitations of $Pb(OH)_2$, $Cu(OH)_2$ and P-containing minerals, such as chloropyromorphite [$Pb_5(PO_4)_3Cl$] and hydroxypyromorphite [$Pb_5(PO_4)_3OH$], in the PBC700 10 wt% treated soil. The SEM-elemental dot mapping analysis further confirmed the presence of Pb-phosphate species via dot mapping of PBC700 treated soil. These results indicate that the reduction of Pb concentration in the PBC700 treated soil is related to the formations of chloropyromorphite and hydroxypyromorphite which have very low solubility.

Comparisons of Simple Extraction Methods and Availability for Heavy Metals in Paddy Soils (토양 중금속의 단일침출방법과 유효도 비교)

  • Jung, Goo-Bok;Kim, Won-Il;Moon, Kwang-Hyun;Ryu, In-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.314-318
    • /
    • 2000
  • To compare heavy metal phytoavailability in paddy soils near five abandoned mining areas, 4 different soil extractants such as 0.1M-HCl, $0.1M-HNO_3$, 0.05M-EDTA, and 0.005M-DTPA were used. Total acid digestion method $(H_2SO_4:HClO_4:HNO_3)$ was also employed to analyze heavy metal content in 30 paddy soils and brown rice. The rates of extracted heavy metal to total content were in the range of $12.1{\sim}39.1%$ for Cd, $20.5{\sim}45.5%$ for Cu, $10.6{\sim}30.7%$ for Pb, and $6.7{\sim}13.0%$ for Zn. 0.1M-HCl and $0.1M-HNO_3$ extractable both Cu and Pb were relatively less extracted at the high soil pH and extractable calcium site(Mine D) whereas 0.05M-EDTA and 0.005M-DTPA extractable Pb were strongly extracted at the same soils. In case of Cd, Cu, and Zn in soil, 4 types of extractable heavy metals and total content were highly correlated with each other. However, there were positive correlations between 0.1 M-HCl and $0.1M-HNO_3$ extractable Pb as well as between 0.05M-EDTA and 0.005M-DTPA extractable Pb, which were relatively similar extractants in chemical properties. The rates of heavy metals in brown rice to total contents in soils were in the order Zn>Cd>Cu>Pb. Specially, the rate of Cd, Pb, and Zn were lower at the highest level of soil pH and Ex. Ca. Both Cd and Zn in brown rice were positively correlated with those of all soil extractants. It was estimated that the solubility following to the plant uptake of Cd and Zn were higher than those of Cu and Pb considering relationships between all kinds of heavy metal contents in soil and those in brown rice.

  • PDF

Vertical Distribution of the Heavy Metal in Paddy Soils of Below Part at Guundong Mine in Milyang, Korea (구운동 폐광산 하류 논토양의 토심별 중금속함량)

  • Yun, Eul-Soo;Park, Sung-Hak;Ko, Jee-Yeon;Jung, Ki-Yeol;Park, Ki-Do;Hwang, Jae-Bok;Park, Chang-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.590-595
    • /
    • 2010
  • This study was conducted to investigate form of pollution brought by residual of mine tailing in agricultural land, and get basic information need for environment restoration. Guundong mine was completely restored region by implementation the soil pollution prevention plan. The districts is soils in Guundong mine vicinity the Mahul-ri, Muan-myeon, Miryang city, Gyeongsangnam-do. The nature of soil studied is the Shinra series andesite and mineral deposits which contain brimstone and heavy metals such as gold, silver, copper, lead, and zinc. The residual mine tailing and around agricultural land of heavy metals analyzed with 0.1N HCI solubility. The chemical properties of surface soil in upper part around mining area were pH 4.3-4.4, organic matter 19-21 g $kg^{-1}$, available $P_2O_5$ 85 mg $kg^{-1}$, exchangeable Ca 0.21-0.25 $cmol_c\;kg^{-1}$, exchangeable Mg 0.04 $cmol_c\;kg^{-1}$. The pH, exchangeable Ca, and Mg were increased with soil depth. The contents of 0.1N HCl extractable Cu, Cd, Pb, Cr, and Ni in soil (siteI) which influenced by outflow water from mine tailing were 97, 0.6, 197, 0.28 및 0.12 mg $kg^{-1}$, respectively. The vertical distribution of heavy metals in soil varied considerably among the metals kind. In case of siteI, The content of Cu, Pb, and Cr in soil was highest at surface soil. However, the content of Cd, Zn, Ni, and Mn was high at middle part of soil profile.

Effects of Supplemental Agents Enhancing Calcium Absorption on Bioavailability of Starfish Calcium in Rats (흰쥐에서 불가사리칼슘의 체내이용성에 대한 칼슘흡수증진물질의 첨가 효과)

  • Moon, Ji-Young;Jang, Soo-Jung;Park, Mi-Na;Park, Hee-Yeon;Lee, Yeon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.832-839
    • /
    • 2007
  • This study was conducted to investigate the bioavailability of starfish calcium with substances enhancing calcium absorption. Three week-old young female rats (Sprague-Barley) were divided into 5 groups according to calcium sources and testing agents; calcium carbonate (C), starfish calcium (S), starfish calcium + casein phosphopeptide (S-CPP), starfish calcium+citrate-malate (S-CM), starfish calcium+isoflavone (S-ISO), and were fed experimental diets containing AIN-93G based Ca (0.35% w/w) diet with CPP, CM and ISO for 6 weeks. Blood, femur, urine and feces samples were collected. There was no significant difference among groups in terms of growth and food intake. Serum Ca concentrations were normal in all 5 groups. Serum P concentrations and ALP activities were not significantly different among groups. Ca absorption and retention were significantly increased both in S-CPP and S-CM groups compared to C group (p<0.05). p absorption was significantly higher in S-CPP group than in other groups. While the amount of soluble Ca of intestinal contents did not differ among groups, the amount of insoluble Ca was significantly lower in S-CPP, S-CM and S-ISO groups than in C and S groups. However, the weight, Ca and P concentrations of femur were not significantly different among groups. These results suggest that the addition of CPP and citrate-malate were more effective for enhancing the bioavailability, intestinal absorption and solubility of starfish calcium.

Use of Biosurfactant for the Removal of Organic Pollutants in Soil/Groundwater (바이오 계면활성제에 의한 토양/지하수내 유기성 오염물질 제거)

  • Ko, Seok-Oh;Yoon, Seok-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.193-201
    • /
    • 2000
  • Partitioning of hydrophobic organic compounds (HOCs) to a biosurfactant, hydroxypropyl-${\beta}$-cyclodextrin (HPCD), was conducted to evaluate the feasibility of using HPCD to remove HOCs from soil/groundwater. HOC partitioning to HPCD was very fast, with over 95% of the complexation occurring within 10 min. Some influence of solution chemistry and HOC concentration on HOC-HPCD complex formation coefficients was observed. HPCD sorption on soil as quantified by both a fluorescence technique and total organic carbon measurements was negligible, indicating no significant affinity of HPCD for the solid phase. Although the HOC solubilization capability of HPCD was lower than that of synthetic surfactants such as SDS and Tween 80, HPCD can be effective in removing sorbed HOCs from a model subsurface environment, primarily because of its negligible sorption to the solid phase (i.e., all the HPCD added facilitates HOC elution). However, in contrast with conventional surfactants, HPCD becomes relatively less effective for HOC partitioning with increasing HOC size and hydrophobicity. Therefore, comparisons between HPCD and synthetic surfactants for enhanced remediation applications must consider the specific HOC(s) present and the potential for surfactant material losses to the solid phase, as well as other more generally recognized considerations such as material costs and potential toxicological effects.

  • PDF