• Title/Summary/Keyword: Ozone episode

Search Result 57, Processing Time 0.023 seconds

A Comparative study on Ambient Air Quality Standard for Ozone (오존 대기 환경기준의 비교 연구)

  • 허정숙;김태오;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.159-173
    • /
    • 1999
  • Based on air quality monitoring data('89~'97) operated by the Department of Environment, we provide various fundamental statistics for ground ozone. The purpose of this paper are to review the national ambient ozone standard, to study spatial distribution of ozone. Since we, in Korea, calculate average ozone level, to examine the occurrences of ozone level 3 times a day (1~8, 9~16, 17~24 hours), the method does not seem to be scientifically sound comparing to a running average method adapted by the USEPA. When we counted the number of cases with 8-h average O3 level exceeding 60ppb(8-h average standard in Korea)and 80 ppb (that in the U.S.A) and also when we calculated 8-hour average ozone level based on th US method, some regions were classified as non-attainment areas. Especially in Seoul, results of spatial distribution analysis showed that high level ozone over 80 ppb was observed at Kuui-Dong and Pangi-Dong in the eastern part and at Ssangmun-Dong in the northeastern part. Also, occurrences of ozone episode defined as number of days then ozone level exceeding 80 ppb for 3 consecutive hours were extensively reviewed in this paper.

  • PDF

The Characterization of Surface Ozone Concentrations in Seoul, Koera

  • Heo, Jeong-Sook;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E3
    • /
    • pp.129-142
    • /
    • 2002
  • This paper provides a long-term perspective for ozone concentrations at 20 national air quality monitoring sites in Seoul from 1989 to 1998, which were managed by the Korean Ministry of Environment. Ozone episodes occurred more frequently in the east areas (Bangi, Guui, Seongsu, and Ssangmun) than in the west area (Guro and Oryu). When an ozone episode happened, hourly ozone concentrations over 80 ppb continued for an average of 4.0 hours at all sites. Annual variations in daily mean and maximum oBone concentrations showed broadly consistent upward trends at Ssangmun and Gwanaksan. Monthly mean ozone concentrations were the highest from May to June and the 99$^{th}$ and 95$^{th}$ percentile levels appeared higher during June, July, and August. The diurnal patterns of hourly mean ozone levels in urban areas showed typical photochemical formation and destruction, while the flat diurnal shape before 1996 at Gwanaksan indicated few significant photochemical reactions due to a lack of precursors of ozone. The occurrence of ozone over 80 ppb was ascribed to meteorological conditions such as high temperature, strong solar radiation, low relative humidity, and low wind speed with winds most frequently in a westerly direction.

Meteorological Characteristics of High-Ozone Episode Days in Daegu, Korea (대구시의 고농도 오존 발생 일에 나타나는 기상학적 특성)

  • Son, Im-Young;Kim, Hee-Jong;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.424-435
    • /
    • 2002
  • This study analyzes the surface ozone and meteorological data in Daegu for a period from 1997 to 1999. It also investigates the meteorological characteristics of high ozone episodes. For this study the high ozone episode has been defined as a daily maximum ozone concentration higher than 100ppb in at least one station among six air quality monitoring stations in Daegu, Korea. The frequency of episodes is 13 days. The frequency is the highest in May and September. The average value of daily maximum ozone concentration is 81.6ppb, and 8-hour average ozone concentration is 58.6ppb for the high episodes. This shows that ozone pollution is continuous and wide-ranging in Daegu. The daily maximum ozone concentration is positively correlated to solar radiation and daily maximum temperature, but negatively correlated to relative humidity, wind speed and cloud amount. The maximal correlation coefficient to solar radiation is 0.45. The differences between high ozone episode day's daily mean meteorological value and monthly mean value are +1.58hPa for sea level pressure, +3.45${\circ}$C for maximum temperature, -5.69% for relative humidity, -0.46ms$^{-1}$ for wind speed, -1.79 for cloud amount, and +3.97MJm$^{-2}$ for solar radiation, respectively. This shows that strong solar radiation, low wind speed and no precipitation between 0700${\sim}$1100LST are favorite conditions for high ozone episodes. It is related to the morning stagnant condition.

Numerical Simulation of Ozone using UAM-V on Summer Episode in the Costal Urban Area, Busan (UAM-V를 이용한 부산지역 고농도 오존사례 수치모의)

  • 김유근;오인보;황미경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • Temporal and horizontal distributions of surface ozone concentrations covering the Busan metropolitan area were simulated by UAM -V (The Variable grid Urban Airshed Model) that was run with meteorological inputs taken from MM5 for ozone episode day (18 July 1999). UAM-V underestimated the daily maximum ozone con-centration about 14 ppb on average at all monitoring sites within Busan area comparing with observed value. but the correlation between observed and simulated values showed quite significant (R = 0.896, p< 0.01 on average). Higher concentrations of ozone occurred near the city center and industrial areas (western side of city) with high levels of anthropogenic source in the morning, and transport of ozone and its precursors by sea breeze developed in the afternoon contributed to elevated ozone levels in downwind rural areas. Particalarly in slightly downwind area of city center, the highest daily maximum ozone concentration ($\geq$120 ppb) was simulated by UAM-V at 1400 LST. Consequently, local environments including emission distributions and land -sea breeze circulation influenced ozone distributions in the Busan metropolitan area.

Estimating Influence of Local and Neighborhood Emissions on Ozone Concentrations over the Kwang-Yang Bay based on Air Quality Simulations for a 2010 June Episode (대기질 모사를 통한 인접지역 배출량이 광양만 오존농도에 미치는 영향분석 - 2010년 6월 사례를 중심으로)

  • Kim, Soon-Tae;Lee, Chong-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.504-522
    • /
    • 2011
  • Simulations of CMAQ with the High-order Decoupled Direct Method (HDDM) for a 2010 June episode are applied to estimate the influence of local and neighborhood emissions on ozone concentrations in the Kwang-Yang Bay (KYB) area. In order to examine ozone response to reductions in $NO_x$ and VOC emissions from KYB and Gyeongsang, ozone isopleths are generated with the first and second-order sensitivity coefficients from HDDM simulations at three sites; Taein, Samil, and Gwangmoo. Simulations show that reduction in KYB $NO_x$ may increase ozone over the sites. On the contrary, $NO_x$ reduction from Gyeongsang may decrease ozone at the sites when transport of ozone and its precursors from upwind Gyeongsang is potentially high. However, VOC reductions from KYB and Gyeongsang are favorable to lower ozone over KYB. The study implies that emission reductions for both local and neighboring areas are likely more effective to bring KYB to ozone attainment.

Estimating Influence of Biogenic Volatile Organic Compounds on High Ozone Concentrations over the Seoul Metropolitan Area during Two Episodes in 2004 and 2007 June (자연배출량이 수도권 고농도 오존 사례에 미치는 영향범위 추정: 2004년과 2007년 6월 사례를 중심으로)

  • Kim, Soon-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.751-771
    • /
    • 2011
  • Biogenic Volatile Organic Compound (BVOC) emissions are estimated with BEIS3.12 (Biogenic Emissions Inventory System version 3.12) over the Seoul Metropolitan Area (SMA) and then used in CMAQ (Community Multiscale Air Quality) simulations for two high ozone episodes in 2004 and 2007 June. The first- and second-order sensitivity coefficients of ozone to BVOC emissions are estimated with High-order Decoupled Direct Method (HDDM) simulation in order to estimate the influence of BVOC emissions on ozone using the Zero-Out Contribution (ZOC) approach. ZOC analysis shows that relative contribution of BVOC emissions on daily maximum 1-hr ozone is as high as 30% for high ozone days above 100 ppb. However simulated isoprene concentrations were over-estimated by a factor of 2 when compared to the observations at the PAMS (Photochemical Air Monitoring Station) for the 2007 episode. When assumed that actual BVOC emissions are 50% less than estimated, the ZOC of BVOC emissions on daily maximum ozone drops by more than 10 ppb for the episode. The result indicates that uncertainty in BVOC emissions may have significant impact on high ozone prediction in the SMA.

Photochemical Modeling of July 1994 High-Ozone Episode in the Greater Seoul Area

  • Kim, Jin-Young;Ghim, Young-Sung;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.55-64
    • /
    • 1999
  • The CIT(California Institute of Technology) three-dimensional Eulerian photochemical model was applied to the Greater Seoul Area, Korea for July 24, 1994, a day of the 9-day ozone episode to understand the characteristics of photochemical air pollution problems in the area. The modeling domain was 60km$\times$60km with the girl size of 2km$\times$2km. As the base case emissions, air pollutant emission data of the National Institute of Environmental Research, Korea for the year of 1991 were used with modifications based on EKMA(Empirical Kinetic Modeling Approach) resutls. Comparisons between predicted and observed concentrations showed that the model predicted the peak concentration over the domain reasonably. It was found that the location of the peak ozone concentration was mainly decided by metorological conditions. But the model could not resolve the spatial variations of concentration station by station, which was mainly caused by localized variations in emission and meteorology.

  • PDF

Photochemical Analysis of Ozone Episodes in the Metropolitan Area of Seoul During the Summer 2004 (2004년 여름 서울에서 발생한 고농도 오존 사례의 광화학적 분석)

  • Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.361-371
    • /
    • 2006
  • This study examines ozone episodes occurred during the intensive sampling periods (Jun. 1-30, 2004) in the air of Seoul metropolitan area. During that period, there were 8 events (or days) in which 1 hr averaged ozone concentrations were greater than 100 ppbv. The photochemical analysis of ozone chemistry (i.e., budget and formation and destruction strengths of ozone) was carried out using a photochemical box model. Peaks in diurnal ozone variations during ozone episode periods occurred were concurrent with the sudden change of the slope of $NO_{2}/NO$ ratio, suggesting significant correlation with photochemical reactivity. In addition, the ozone peaks were concurrent with high concentrations of ozone precursors, peroxy radicals of $HO_{2},\;CH_{3}O_{2},\;and\;RO_{2}$. High ozone levels during the ozone episodes are likely to be affected by ozone destruction rate.

A Study on the Characteristics of Surface Ozone Concentration at Dongsamdong, Pusan (부산 동삼동 지역의 지표오존농도 특성 연구)

  • Jeon, Byung Il
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.2
    • /
    • pp.21-29
    • /
    • 1999
  • This study was conducted to investigate the characteristics of surface ozone concentration and occurrence of high ozone concentration using hourly ozone and meteorological data of 1997~1998 in Pusan coastal area. Monthly mean ozone concentration was highest in Spring(35.4ppb) and lowest in Winter(22.2ppb). Relative standard deviation indicating clearness of observation site was 0.42 that is similar to urban area. The diurnal variation of ozone concentration of Dongsamdong showed maximum at 15~16LST and minimum 07~08LST that typical pattern of ozone concentration. In ozone episode period(May 18~23, 1998), diurnal change of ozone concentration was very high, and ozone concentration was related to meteorological parameters such as temperature, relative humidity, wind speed, cloud amount and radiation on a horizontal surface.

  • PDF

Influence of Isoprene Emissions on Ozone Concentrations in the Greater Busan Area during a High Ozone Episode in 2006 (2006년 오존 고농도 사례 시 부산권 지역 isoprene 배출이 오존 농도에 미치는 영향 분석)

  • Kim, Yoo-Keun;Jo, Young-Soon;Song, Sang-Keun;Kang, Yoon-Hee;Oh, In-Bo
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.829-841
    • /
    • 2010
  • The estimation of a biogenic volatile organic compound (BVOC, especially isoprene) and the influence of isoprene emissions on ozone concentrations in the Greater Busan Area (GBA) were carried out based on a numerical modeling approach during a high ozone episode. The BVOC emissions were estimated using a biogenic emission information system (BEIS v3.14) with vegetation data provided by the forest geographical information system (FGIS), land use data provided by the environmental geographical information system (EGIS), and meteorological data simulated by the MM5. Ozone simulation was performed by two sets of simulation scenarios: (1) without (CASE1) and (2) with isoprene emissions (CASE2). The isoprene emission (82 ton $day^{-1}$) in the GBA was estimated to be the most dominant BVOC followed by methanol (56) and carbon monoxide (28). Largest impacts of isoprene emissions on the ozone concentrations (CASE2-CASE1) were predicted to be about 4 ppb in inland locations where a high isoprene was emitted and to be about 2 ppb in the downwind and/or convergence regions of wind due to both the photochemical reaction of ozone precursors (e.g., high isoprene emissions) and meteorological conditions (e.g., local transport).