• Title/Summary/Keyword: Oyster farm

Search Result 76, Processing Time 0.021 seconds

Characteristics of microorganism isolated from Cotton Waste Media for the Oyster Mushroom Cultivation (느타리버섯 균상재배 중 배지에서 분리한 미생물의 특성)

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Oh, Jin-A;Han, Hye-Su;Um, Na-Na
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.120-124
    • /
    • 2010
  • This study was carried out to investigate interaction between mushroom mycelium and microorganisms in cotton waste media for the shelf cultivation of oyster mushroom. Two oyster mushroom farms was selected for this experiment. One was good mushroom farm (farmhouse I) and the other failed mushroom farm (farmhouse II). In farmhouse I, the inhibition microorganisms were higher toward the end of growth stage than the early stage, but the result of farmhouse II was opposite. Effects of the mycelium growth on plate culture showed same results on mushrooms as the earlier one. And the mycelium growth was influenced by secretory materials of microorganisms. Among of the isolates, Only few microorganism had inhibitory effects on either P. tolaasii or T. harzianum causing the disease of oyster mushrooms. But more microorganisms had inhibition effects on P. agarici.

Estimation of Carrying Capacity by Food Availability for Farming Oysters in Goseong Bay, Korea (먹이가용성에 의한 고성만의 굴 양식장 수용력)

  • Lee, Sang-Jun;Jeong, Woo-Geon;Cho, Sang-Man;Kwon, Jung No
    • The Korean Journal of Malacology
    • /
    • v.32 no.2
    • /
    • pp.83-93
    • /
    • 2016
  • For the continuous stable production of oyster, estimation of food availability (F) was carried out in Goseong Bay, south of coast Korea. Primary productivity ranged from 0.07 to $0.44gC/m^2/day$ (average $0.25gC/m^2/day$), lowest in July and highest in January. The distribution of primary productivity at Goseong Bay showed the pattern of "high in the south and low in the north." Food availability (F) was $F{\leq}0$, indicating insufficient food supply, from August to November and F > 0 from January to April. Continuous insufficient food supply was observed at 18 oyster farms in the southern part of the bay and 4 in its northern part. Mortality at the oyster farms was 56% on the average, and around 58% of death occurred during November when food supply was insufficient. The optimal population of cultured oyster per unit flow area was calculated to be $110-115indiv./m^2$ (198-201 indiv./string). When the sea area was divided into 3 regions (A, B, C) according to carrying capacity, the carrying capacity of (A) regions was $52-53indiv./m^2$ (93-95 indiv./string), (B) regions was $142-144indiv./m^2$ (255-259 indiv./string), and (C) regions was $198-202indiv./m^2$ (356-363 indiv./string). In particular, (A) regions showed extremely low productivity. For continuous stable oyster farming at Goseong Bay, it is necessary to control point and non-point source pollution through continuous environmental monitoring and to adjust harvest according to the base carrying capacity during the season of high water temperature.

MICROENVIRONMENT IN OYSTER FARM AREA 1. On the Eutrophication and Raft Density in Geoje Bay (굴 양식장의 미세환경에 관한 연구 1. 거제만의 양식장밀도 및 부영양화에 관하여)

  • CHO Chang Hwan;KIM Yong Sool
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.259-265
    • /
    • 1977
  • After a great mortality owing to abnormal oceanographical condition and fungal disease in 1973 hanging cultch lines per raft has been reduced to 450 from 558, and oyster production per raft has also been decreased. It seems to be result of dense culture of oysters and its resulting accumulation of waste materials on the sea bottom in the farm area. The present study was carried out to investigate the effect of rearing density and the degree of eutrophication in Geoje Bay for 6 months from June through November in 1977. Total area of this bay is about $48.9\;km^2$, and the area of registered oyster farms as of November in 1977 is around $10.9\;km^2$, which is about $22.3\%$ of this bay. Water Quality during summer season was shown as transparency 5.5 m, COD 1.5ppm, degree of oxygen saturation $90.6\%$ in upper and middle layers and $82.2\%$ near bottom, chlorophyll-a 3.0 mg/m^3, and phytoplankton $8.7\times10^4\;cells/l$. In superficial mud in August COD was 35.4 mg/g, total sulphide 0.24 mg/g, and phaeophytin $43.7\;{\mu}g/g$dry mud. These values indicate that water qualify in this bay is so far excellent but quantities of chemical oxygen demend and sulphide in bottom mud show maximum level or a little over eutrophication standard.

  • PDF

Mycelial growth of oyster mushroom by substrates of water-hyacinth and banana leaf and stalk (부레옥잠과 바나나 잎, 줄기를 사용한 배지에서의 느타리버섯 균사생장)

  • Chang, Hyun-You;Lee, Sun-Een;Noh, Mun-Ki
    • Journal of Mushroom
    • /
    • v.7 no.2
    • /
    • pp.45-48
    • /
    • 2009
  • This research was carried out to clarify the feasibility of using the banana leaf and stalk and water hyacinth by substrate of oyster mushroom. The 100% cotton, water hyacinth, banana leaf and stalk was used as a mushroom media respectively. The growth of fungi was observed after 15 days and showed 115mm in the cottonseed hull, 80mm in the water hyacinth, and 72mm in the banana leaf and stalk. In the mixed substrate that added water hyacinth to cottonseed hull with the rate of 20, 50, 80% the growth was observed with 115, 103, 62mm respectively. In case of the banana mixed substrate the results was appeared with 106, 89, 78mm respectively. In the pure substrate the cottonseed hull's mycelial growth was the fastest and in the case of mixed substrate with water hyacinth 20% and cotton 80% was the fastest growth.

  • PDF

Dynamics of Heavy Metals in Soil Amended with Oyster Shell Meal (굴 패화석시용에 따른 토양 내 중금속 동태 변화)

  • Lee, Ju-Young;Hong, Chang-Oh;Lee, Chang-Hoon;Lee, Do-Kyoung;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.358-363
    • /
    • 2005
  • A large amount of oyster-shell waste has been illegally disposed at oyster farm sites along the southern coast of Korea, which already created serious environmental problems. Therefore, the study was undertaken to increase the consumption of oyster shell meal as a soil amendment. The effects of oyster shell meal on dynamics of heavy metals and uptake of heavy metals by spring Chinese cabbage were evaluated in silt loam soil (in Gyeongsang National University, Jinju, Gyeongnam-do, Korea), where 0, 4, 8, 12 and 16 Mg $ha^{-1}$ oyster-shell meal fertilizer were added. Lime treatment (2 Mg $ha^{-1}$) was selected as a control. In the results of this study, cabbage yields were increased by increasing levels of oyster-shell meal fertilizer. With increasing levels of oyster-shell meal fertilizer, total heavy metals concentrations were not significant among treatments. However, 0.1N HCl extractable heavy metals concentration was significantly reduced due to increasing of soil pH. A lot of portion (ca. $80{\sim}90%$) heavy metals fraction of all fractions was residual phase in soil after harvesting. The contents of Cu, Mo, Zn in cabbage were slightly increased by increasing levels of oyster shell meal fertilizer. However, there were no toxic symptoms of heavy metals during cultivation. Conclusively, it was estimated that oyster shell fertilizer could be a good amendment to increase productivity of crop and reduce uptake of heavy metals by crop and mobility of heavy metals in soil.

Detection of Laver Aquaculture Site of Using Multi-Spectral Remotely Sensed Data (다중분광 위성자료를 이용한 김 양식어장 탐지)

  • Jeong, Jongchul
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.3
    • /
    • pp.127-134
    • /
    • 2005
  • Recently, aquaculture farm sites have been increased with demand of the expensive fish species and sea food like as seaweed, laver and oyster. Therefore coastal water quality have been deteriorated by organic contamination from marine aquaculture farm sites. For protecting of coastal environment, we need to control the location of aquaculture sites. The purpose of this study is to detect the laver aquaculture sites using multispectral remotely sensed data with autodetection algorithm. In order to detect the aquaculture sites, density slice and contour and vegetation index methods were applied with SPOT and IKONOS data of Shinan area. The marine aquaculture farm sites were extracted by density slice and contour methods with one band digital number(DN) carrying 65% accuracy. However, vegetation index algorithm carried out 75% accuracy using near-infra red and red bands. Extraction of the laver aquaculture site using remotely sensed data will provide the efficient digital map for coastal water management strategies and red tide GIS management system.

History of Mushroom Industry in Korea (한국 버섯산업의 발전사)

  • You, Chang-Hyun
    • Journal of Mushroom
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Mushroom cultivation in Korea was launched in the early 1960's. At that time Korean government started a program for increasing cultivation of button mushroom (Agaricus bisporus) and oak mushroom (Lentinula edodes) to export agricultural products and to increase farm income. National research institutes under Rural Development Administration, Korea Forest Service, etc. play a leading role in mushroom industry as follows : Development and spread of genetically superior commercial strains, good spawns, and cultivation techniques. Training and field advice to lead farmers for mass production of high quality mushrooms. Political support of facilities and establishments for mushroom cultivation. Several mushrooms including oak mushroom, button mushroom, oyster mushroom, winter mushroom, Ganoderma, P. eryngii, etc. have been popularized for their cultivation techniques and produced in large quantities in the farm. According to a recent statistics, mushrooms have been grown by about 20,000 farm households, in Korea and the gross production of fresh mushrooms is estimated about 170,000 M/T. The gross production of oyster mushroom is the highest followed by winter mushroom, oak mushroom and button mushroom. The gross amount of mushroom production stands over 700 billion won. Thus, mushroom industry goes to the most important cash crop to be produced yearly.

  • PDF

Selection of substitute medium of cotton seed pomace on the oyster mushroom for bottle cultivation (느타리버섯 병재배 면실박 대체배지 선발)

  • Kim, Jeong-Han;Ha, Tae-Moon;Ju, Young-Cheol
    • Journal of Mushroom
    • /
    • v.3 no.3
    • /
    • pp.105-108
    • /
    • 2005
  • Main materials used as media for oyster mushroom cultivation are pine sawdust, beet pulp, cotton seed pomace. Increases in the price and the unbalance of demand and supply of cotton seed pomace was often damage to oyster mushroom cultivation farm, so we investigated agricultural by-product to replace the cotton seed pomace for bottle cultivation of oyster mushroom. Treatment of coconut oil meal or coconut pomace delayed incubation period about 3 days compared with cotton seed waste treatment(control), but yield and income index showed similar to each other in three treatment. Consequently coconut oil meal and coconut pomace could select for cotton seed pomace substitute.

  • PDF

Effect of Temperature and Body Size on Oxygen Consumption and Ammonia Excretion of Oyster, Crassostrea gigas (굴, Crassostrea gigas의 대사율에 미치는 수온 및 개체크기의 영향)

  • Shin, Yun-Kyung;Hur, Young-Baek;Myeong, Jeong-In;Lee, Sik
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2008
  • The tendency of metabolism in oyster, Crassostrea gigas, was investigated in relation to the water temperature and salinity. Oxygen consumption and ammonia excretion were measured and O:N ratio were calculated according to the water temperature from February 2007 to September 2008 and body size. The relationship between oxygen consumption and body weight has been examined in C. gigas. The weight-specific oxygen consumption rate (mg $O_2$/g/h) varied inversely with size. Oxygen consumption and ammonia excretion increased with an increase in water temperature. O:N ratio measured in this study ranged from 8 to 40 under ordinary sea water and the ratio was 8 at $25^{\circ}C$ and 16 at $10^{\circ}C$. This indicates that oyster mainly use the protein as the primary catabolic substrate during gametogenesis. Lower O:N ratio in winter suggests that oysters have to meet their energy demand by metabolizing protein to survive in stressful conditions such as low temperature and lack of sufficient food supply. This studies will provide the basic data for oyster culture farm in assessing the carrying capacity and sustainable management.

  • PDF

Estimation of primary production of the waters around rack oyster farm at Wando, Korea

  • Jeong, Woo-Geon;Cho, Sang-Man
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.9.1-9.7
    • /
    • 2018
  • To establish a comprehensive management strategy, as part of the optimization of cultural practice for an oyster rack culture system, we used a numerical model to estimate the primary production in the waters on the eastern coast of Wando island, South Korea. The estimated primary production ranged from 17.12 to $1052.55mgC\;m^{-2}day^{-1}$ ($204.22{\pm}224.75mgC\;m^{-2}day^{-1}$ in average). Except for the times of peak phytoplankton blooms, the estimated primary production (PP) was consistently under $200mgC\;m^{-2}day^{-1}$, which is more similar to the value of PP measured off the western coast of South Korea than the southern coast. No clear relationship was observed between nitrogen content and rainfall with the exception of heavy rainfall events, indicating that precipitation might not be the main source of nutrients in these waters. No clear influence was observed from Doam tidal discharge, located 24 km north from these waters due to main tide comes in this area from the channel between Gunwe-myeon in Wando island and Pukpyeong-myeon in Haenam-gun. Because of the shallow water depth and strong tidal current, resuspension of sediments, which causes an input of nitrogen into the system, could be easily caused by even mild wind and the infrequent passing of ships. Microscopic examination of the phytoplankton composition showed additional contribution of benthic species such as Paralia sulcata into the waters, which increase the productivity of oyster farms in the waters. The availability of nitrate and phosphate for primary production was temporarily limited throughout most of the spring and autumn blooming season.