• Title/Summary/Keyword: Oxygen-Rich

Search Result 295, Processing Time 0.025 seconds

Silver Loading Effect for the Activated Carbon Fibers Pre-treated with Acid

  • Oh, Won-Chun;Yum, Min-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1189-1194
    • /
    • 2004
  • The adsorption isotherms of N2 onto the metallic silver treated activated carbon fiber samples after acid treatment are Type I with a small amount of capillary condensation hysteresis. Increasing amount of acid treatment leads to a decrease in SBETs and external surface area. But, micropore volume and average pore diameter are presented in constant regular values with increasing amount of sulfuric acid treatment. SEM observes the surface morphology and crystal grown state of metal on the fiber surface. The results of EDX of Ag-activated carbon fiber pre-treated with acid show the spectra corresponding to almost all samples rich in silver with increasing the amount of acid treated. The FT-IR spectra of Ag-activated carbon fiber show that the acid pre-treatment is consequently associated with the homogeneous dispersion of metal with the increased surface acidity of the activated carbon fiber. The type and quality of oxygen groups are determined with Boehm titration method. From the those results, a positive influence of the acidic groups on the carbon fiber surface by acid treatment is also demonstrated by an increase in the contents of metallic silver with increasing of acidic groups.

REM-Related Sleep-Disordered Breathing (REM 수면 관련 수면호흡장애)

  • Shin, Chol;Lee, Hyun-Joo
    • Sleep Medicine and Psychophysiology
    • /
    • v.11 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • Sleep is associated with definite changes in respiratory function in normal human beings. During sleep, there is loss of voluntary control of breathing and a decrease in the usual ventilatory response to both low oxygen and high carbon dioxide levels. Especially, rapid eye movement (REM) sleep is a distinct neurophysiological state associated with significant changes in breathing pattern and ventilatory control as compared with both wakefulness and non-rapid eye movement (NREM) sleep. REM sleep is characterized by erratic, shallow breathing with irregularities both in amplitude and frequency owing to marked reduction in intercostal and upper airway muscle activity. These blunted ventilatory responses during sleep are clinically important. They permit marked hypoxemia that occurs during REM sleep in patients with lung or chest wall disease. In addition, sleep-disordered breathing (SDB) is more frequent and longer and hypoventilation is more pronounced during REM sleep. Although apneic episodes are most frequent and severe during REM sleep, most adults spend less than 20 to 25% of total sleep time in REM sleep. It is, therefore, possible for patients to have frequent apneas and hypopneas during REM sleep and still have a normal apnea-hypopnea index if the event-rich REM periods are diluted by event-poor periods of NREM sleep. In this review, we address respiratory physiology according to sleep stage, and the clinical implications of SDB and hypoventilation aggravated during REM sleep.

  • PDF

Effect of Substitution of MgO for CaO on the Bioglass Structure, Properties and Hydroxyapatite Formation (Bioglass에서 CaO 대신 MgO의 치환첨가에 따른 유리구조, 물성 및 Hydroxyapatite형성)

  • 이호필;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.979-990
    • /
    • 1990
  • The possible use of bioglass as implant materials is due to its biocompatibility to human body. Even if many animal studies for the bioglasses have been performed, their structures and physical properties are not fully understood. In the present work, several investigations such as Raman spectroscopic analysis, density, thermal expansion coefficient, softening temperature, and refractive index measurement were carried out to find the structures and physical properties of bioglasses, where MgO is substituted for CaO in bioglass composition (46.1%SiO2, 24.4%Na2O, 26.9%CaO, 2.6%P2O5 ; mole%). Hydroxyapatite formation on the glass surface reacted in Tris-buffer solution was also examined. When CaO was replaced by MgO, nonbridging oxygen in glass structuer was diminished but the degree of disorder increased. Thermal expansion and softening properties showed the mixed oxide effect. Hydroxyapatite were formed on the surface of 0~11mole% of MgO containing bioglasses, and the thickness of SiO2-rich layer as well as hydroxyapatite layer were unchanged with MgO content. However, the hydroxyapatite was not formed on the surface of the bioglasses containing over 11 mole percent MgO, even if the glasses were reacted for long period.

  • PDF

Conversion Process of Amorphous Si-Al-C-O Fiber into Nearly Stoichiometric SiC Polycrystalline Fiber

  • Usukawa, Ryutaro;Oda, Hiroshi;Ishikawa, Toshihiro
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.610-614
    • /
    • 2016
  • Tyranno SA (SiC-polycrystalline fiber, Ube Industries Ltd.) shows excellent heat-resistance up to $2000^{\circ}C$ with relatively high mechanical strength. This fiber is produced by the conversion process from a raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber at very high temperatures over $1500^{\circ}C$ in argon. In this conversion process, the degradation reaction of the amorphous Si-Al-C-O fiber accompanied by a release of CO gas for obtaining a stoichiometric composition and the subsequent sintering of the degraded fiber proceed. Furthermore, vaporization of gaseous SiO, phase transformation and active diffusion of the components of the Si-Al-C-O fiber competitively occur. Of these changes, vaporization of the gaseous SiO during the conversion process results in an abnormal SiC-grain growth and also leads to the non-stoichiometric composition. However, using a modified Si-Al-C-O fiber with an oxygen-rich surface, vaporization of the gaseous SiO was effectively prevented, and then consequently a nearly stoichiometric SiC composition could be obtained.

Spray Characteristics of Gas-centered Swirl Coaxial(GCSC) Injector in High Pressure Condition (고압환경에서의 기체-액체 분사기 분무 특성 연구)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Bae, Tae-Won;Choi, Hwan-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.5-8
    • /
    • 2010
  • The GCSC injectors studied in this paper are those applied to the combustion chamber of staged combustion engines. Liquid fuel is injected through tangential holes along the outer wall of the GCSC injector forming a swirling sheet and oxygen rich gas generated by a preburner enters axially through the center orifice of the injector to form a gaseous jet. The spray characteristics of GCSC injectors under ambient/high pressure conditions and the effect of recess on spray characteristics have been examined in this paper. These results are expected to be used as fundamental data to develop of a staged combustion engine.

  • PDF

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

Numerical Study of the Cooling Channel of the Preburner for a Small Liquid Rocket Engine (소형 액체로켓엔진용 예연소기 냉각채널 유동해석)

  • Moon, In-Sang;Shin, Kang-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.21-24
    • /
    • 2010
  • The cooling channel of the preburner for staged combustion engines was studied. The combustion pressure of the researched preburner is about 210 bar which is very high compared with the engines of the Korean Launch Vechicle and 30 ton class liquid rocket engines developed as a pre-research program. Also, the combustion is an oxygen rich process unlike the gas generators of open cycle kerosene engines. Thus the cooling process is very important to make the preburner stable. Many configurations for the preburner were developed and numerically analyzed. As a result, the pressure loss could be reached below the target.

  • PDF

Isolation and Characterization of a Mesophilic Arthrospira maxima Strain Capable of Producing Docosahexaenoic Acid

  • Hu, Hongjun;Li, Yeguang;Yin, Chuntao;Ouyang, Yexin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.697-702
    • /
    • 2011
  • A strain of the cyanobacterium Arthrospira was isolated from Lake Chahannaoer in northern China and was characterized according to microscopic morphology, photosynthetic oxygen-evolving activity, growth rate, and nutritional profile. Compared with thermophilic Arthrospira species occurring naturally in tropical and subtropical lakes, this isolate is mesophilic and grows optimally at ${\sim}20^{\circ}C$. The total protein, fatty acid, phycocyanin, carotenoid, and chlorophyll a contents were 67.6, 6.1, 4.32, 0.29, and 0.76 grams per 100 grams of dry weight, respectively. The strain is rich in polyunsaturated fatty acids (PUFAs). An essential omega-3 fatty acid, docosahexaenoic acid (DHA), was detected, and ${\gamma}$-linolenic acid (GLA) and DHA accounted for 28.3% of the total fatty acid content. These features of this newly isolated strain make it potentially useful in commercial mass culture in local areas or as a biofuel feedstock. It is also an alternative resource for studying the metabolic PUFA pathways and mechanisms of cold stress tolerance in cyanobacteria.

A Study on the Production of Xanthan Gum by Xanthomonas campestris (Xanthomonas campestris에 의한 Xanthan gum 생산에 관한 연구)

  • 김재형;유영제이기영윤종선
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.25-35
    • /
    • 1990
  • In the Xanthan gum fermentation by Xanthomonas campestris there are problems of the large energy consumption by long fermentation time, the mass transfer of oxygen and nutrients by high viscous fermentation broth. In this study, the media optimization and the fed batch fermentation were carried out to decrease fermentation time and increase Xanthan gum yield. The $O_2$ uptake rate (OUR) and $CO_2$ evolution rate(CER) which were obtained from the analysis of fermentation exit gas using a gas chromatograph were investigated. As a result, the fermentation time decreased at optimal assimilable nitrogen concentration but increased at poor or rich assimilable nitrogen concentration, the Xanthan gum biosynthesis was stimulated under the limited condition of assimilable nitrogen source and the optimum fermentation medium was obtained as follow; Glucose=30g / l, Peptone=8.0g / l, $K_2HPO_4=2.0g/l$, $MgS0_47H_2O=10g/l$, Sodium acetate=20g/l, Sodium pyruvate=0.5g/1. As the agitation speed and nitrogen concentration increased, the $O_2$ uptake rate and $CO_2$ evolution rate increased. The OUR and CER were 37.3mmol $O_2/\;l$ hr and 20.2 mmol $CO_2/\;L$ hr at peptone 11g / l and agitation speed 990RPM, respectively. In fed batch fermentation, the final concentration of Xanthan gum was enhanced up to 29g / l.

  • PDF

High-temperature Corrosion of CrAlSiN Films in Ar/1%SO2 Gas

  • Lee, Dong Bok;Xiao, Xiao;Hahn, Junhee;Son, Sewon;Yuke, Shi
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.5
    • /
    • pp.246-250
    • /
    • 2019
  • Nano-multilayered $Cr_{25.2}Al_{19.5}Si_{4.7}N_{50.5}$ films were deposited on the steel substrate by cathodic arc plasma deposition. They were corroded at $900^{\circ}C$ in $Ar/1%SO_2$ gas in order to study their corrosion behavior in sulfidizing/oxidizing environments. Despite the presence of sulfur in the gaseous environment, the corrosion was governed by oxidation, leading to formation of protective oxides such as $Cr_2O_3$ and ${\alpha}-Al_2O_3$, where Si was dissolved. Iron diffused outward from the substrate to the film surface, and oxidized to $Fe_2O_3$ and $Fe_3O_4$. The films were corrosion-resistant up to 150 h owing to the formation of thin ($Cr_2O_3$ and/or ${\alpha}-Al_2O_3$)-rich oxide layers. However, they failed when corroded at $900^{\circ}C$ for 300 h, resulting in the formation of layered oxide scales due to not only outward diffusion of Cr, Al, Si, Fe and N, but also inward movement of sulfur and oxygen.