• Title/Summary/Keyword: Oxygen-Enriched Ratio

Search Result 18, Processing Time 0.028 seconds

Effect of Secondary Air on Flow and Combustion Characteristics in a Pyrolysis Melting Incinerator (열분해 용융소각로 연소실의 2차공기 주입 영향에 관한 전산해석 및 실험)

  • Jeon, Byoung-Il;Park, Sang-Uk;Shin, Dong-Hoon;Ryu, Tae-Woo;Jeon, Kum-Ha;Hwang, Jung-Ho;Lee, Jin-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.149-157
    • /
    • 2004
  • In the present paper we studied experimentally fundamental optimization of oxygen enriched pyrolysis melting incinerator, Characteristics of this system was confirmed dealing with the gas flow and combustion properties for the inside secondary air injection. The experiment setup has a disposal rate of 30kg/hr which was measured by the inside temperature and gas. Along with above experiments, the three-dimensional computation was employed to analyse the combustion fluid dynamics and gas residence time. Equations for turbulence and heat - transmission as well as chemical reactions were solved by using common codes. The experimental combustion chamber was composed of staged combustion types structure for reducing NOx. Finally, it was verified that the control of the secondary air and air ratio of thermo stack were important. In the computational analysis, it showed reasonable agreement with the experimental results regarding the temperature and discharged gas concentration.

  • PDF

Characteristic Study of LNG Combustion in the mixture of $O_2/CO_2$ ($O_2/CO_2$ 혼합조건에 따른 LNG 연소특성해석)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.647-653
    • /
    • 2007
  • The ultimate objective of this study is to develop a reliable oxygen-enriched combustion techniques especially for the case of the flue gas recycling in order to reduce the $CO_2$ emissions from practical industrial boilers. To this end a systematic numerical investigation has been performed, as a first step, for the resolution of the combusting flame characteristics of lab-scale LNG combustor. One of the important parameters considered in this study is the level of flue gas recycling calculated in oxygen enriched environment. As a summary of flame characteristics, for the condition of 100% pure $O_2$ as oxidizer without any flue gas recycling, the flame appears as long and thin laminar-like shape with relatively high flame temperature. The feature of high peak of flame temperature is explained by the absence of dilution and heat loss effects due to the presence of $N_2$ inert gas. The same reasoning is also applicable to the laminarized thin flame one, which is attributed to the decrease of the turbulent mixing. These results are physically acceptable and consistent and further generally in good agreement with experimental results appeared in open literature. As the level of $CO_2$ recycling increases in the mixture of $O_2/CO_2$, the peak flame temperature moves near the burner region due to the enhanced turbulent mixing by the increased amount of flow rate of oxidizer stream. However, as might be expected, the flue gas temperature decreases due to presence of $CO_2$ gas together with the inherent feature of large specific heat of this gas. If the recycling ratio more than 80%, gas temperatures drop so significantly that a steady combustion flame can no longer sustain within the furnace. However, combustion in the condition of 30% $O_2/70% $ $CO_2$ can produce similar gas temperature profiles to those of conventional combustion in air oxidizer. An indepth analyses have been made for the change of flame characteristics in the aspect of turbulent intensity and heat balance.

Distribution of Water Masses and Distribution Characteristics of Dissolved Inorganic and Organic Nutrients in the Southern Part of the East Sea of Korea: Focus on the Observed Data in September, 2011 (동해 남부 해역의 수괴 분포와 용존 무기 및 유기 영양염의 분포 특성: 2011년 9월 관측자료를 중심으로)

  • Kwon, Hyeong Kyu;Oh, Seok Jin;Park, Mi Ok;Yang, Han-Soeb
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.90-103
    • /
    • 2014
  • Distribution characteristics of water masses, dissolved inorganic and organic nutrients were investigated in the southern part of the East Sea of Korea in September, 2011. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 4 major groups, such as WM (water mass)-I, WM-II, WM-III, WM-IV. Their characteristics were similar to Tsushima Surface Water (TSW), Tsushima Middle Water (TMW), North Korea Cold Water (NKCW) and East Sea Proper Water (ESPW), respectively. In the vertical profiles of dissolved nutrients, dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) concentrations were highest in the WM-IV, followed by WM-III, WM-II, WM-I. On the contrary, distribution of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) were highest in the WM-I, followed by WM-II, WM-III, WM-IV. Although the DIN : DIP ratio in all of the water masses was similar to Redfield ratio(16), the DIN : DIP ratio in mixed layer was about 5.3, indicating that inorganic nitrogen is the limiting factor for the growth of phytoplankton. However, the DON proportion in dissolved total nitrogen (DTN) was about 70% in the mixed layer where inorganic nitrogen is limiting factor. Thus, enriched DON may play an important source of the nutrient for the growth of phytoplankon in the East Sea.

Assessment on the Flame Retardancy for Polyethylene/Montmorillonite Nanocomposite (Polyethylene/Montmorillonite Nanocomposite의 난연성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.72-76
    • /
    • 2006
  • Polymer/clay nanocomposites have generated considerable interests in the past decade because adding just tiny amount of clay to the polymer matrix could produce a dramatic enhancement in physical, thermal and mechanical properties. Smectite clays, such as montmorillonite (MMT), are of great industrial value because of their high aspect ratio, plate morphology, intercalative capacity, natural abundance and low cost. In this study, PE/MMT nanocomposites were directly prepared by melt intercalating PE and the modified clay. The nanostructure was verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their flame retardant properties were measured and discussed by limiting oxygen index (LOI), char yield and smoke mass concentration. And their thermal stabilities were measured by differential thermogravimetric (DTG) and thermogravimetric analysis (TGA). The PE/MMT nanocomposites proved more effective the conventional composites in reinforcement. Two functions in the thermal stability of the PE/MMT nanocomposite, one is the barrier effect to improve the thermal stability, and another is catalysis, leading to a decrease of the thermal stability. The flammability was greatly decreased due to the formation of the clay-enriched protective char during the combustion.

Stability of Partial Nitrification and Microbial Population Dynamics in a Bioaugmented Membrane Bioreactor

  • Zhang, Yunxia;Xu, Yanli;Jia, Ming;Zhou, Jiti;Yuan, Shouzhi;Zhang, Jinsong;Zhang, Zhen-Peng
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1656-1664
    • /
    • 2009
  • Bioaugmentation of bioreactors focuses on the removal of numerous organics, with little attention typically paid to the maintenance of high and stable nitrite accumulation in partial nitrification. In this study, a bioaugmented membrane bioreactor (MBR) inoculated with enriched ammonia-oxidizing bacteria (AOB) was developed, and the effects of dissolved oxygen (DO) and temperature on the stability of partial nitrification and microbial community structure, in particular on the nitrifying community, were evaluated. The results showed that DO and temperature played the most important roles in the stability of partial nitrification in the bioaugmented MBR. The optimal operation conditions were found at 2-3 mgDO/l and $30^{\circ}C$, achieving 95% ammonia oxidization efficiency and nitrite ratio ($NO_2^-/{NO_x}^-$) of 0.95. High DO (5-6 mg/l) and low temperature ($20^{\circ}C$) had negative impacts on nitrite accumulation, leading to nitrite ratio drop to 0.6. However, the nitrite ratio achieved in the bioaugmented MBR was higher than that in most previous literatures. Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH) were used to provide an insight into the microbial community. It showed that Nitrosomonas-like species as the only detected AOB remained predominant in the bioaugmented MBR all the time, and coexisted with numerous heterotrophic bacteria. The heterotrophic bacteria responsible for mineralizing soluble microbial products (SMP) produced by nitrifiers belonged to the Cytophaga-Flavobacterium-Bacteroides (CFB) group, and $\alpha$-, $\beta$-, and $\gamma$- Proteobacteria. The fraction of AOB ranging from 77% to 54% was much higher than that of nitrite-oxidizing bacteria (0.4-0.9%), which might be the primary cause for the high and stable nitrite accumulation in the bioaugmented MBR.

Oxygen and Hydrogen Isotopic Compositions of Stream Waters in the Han River Basin (한강 수계 분지내 하천수의 산소, 수소 안정동위원소 조성)

  • 김규한;이세희
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2002
  • Oxygen and hydrogen isotopic compositions of stream water in the Han river basin are expressed by the equation of $\delta$D=6.6$\delta$$^{18}$ O-7.4, which is not satisfy the meteoric water line ($\delta$D=8$\delta$$^{18}$ O+10). It might be depended on the local climatic condition and the evaporation effect in the Han river basin. The $\delta$$^{18}$ O and $\delta$D values of stream water in the Han river basin range from -8.2 to -10$\textperthousand$ (avg. -9.1$\textperthousand$) and -60 to -96$\textperthousand$ (avg. -69$\textperthousand$), respectively. The stream water from the South Han river (8$\delta$$^{18}$ O= -8.9~ -10$\textperthousand$, avg.-9.3$\textperthousand$ $\delta$D: -66~ -96$\textperthousand$, avg.-69$\textperthousand$) is slightly more depleted in $^{18}$ O and D than those of North Han river ($\textperthousand$$^{18}$ O= -8.4~ -9.7$\textperthousand$, avg. -9.2$\textperthousand$, $\delta$D= -64~ -95$\textperthousand$, avg. -69$\textperthousand$). It reflects more altitude effect than the effect of latitude and Inflow of the $^{18}$ O eniched S $O_4$$^{2-}$ and HC $O_3$- from the carbonate rock and sulfide minerals in the Taebagsan and Hwanggangri mineralized zone. The Main stream water of the Han river having $\delta$D: -60~ -76$\textperthousand$ (avg.-68$\textperthousand$) and $\textperthousand$$^{18}$ O= -8.2~-10$\textperthousand$ (avg.9.0$\textperthousand$) is enriched in $^{18}$ O compared to the South and North Han river waters, which is caused by the evaporation effect. Binary simple mixing ratio of the Main Han river water between South and North Han river waters was obtained to be 6 : 4 by the isotopic data, suggesting a strong influence of South Han river water to the Main Han river water.

Studies on a Feasibility of Swine Farm Wastewater Treatment using Microbial Fuel Cell (미생물연료전지의 가축분뇨 처리 가능성 연구)

  • Jang, Jae-Kyung;Kim, Se-Hee;Ryou, Young-Sun;Lee, Sung-Hyoun;Kim, Jong-Gu;Kang, Young-Goo;Kim, Young-Hwa;Choi, Jung-Eun
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.461-466
    • /
    • 2010
  • In this study the feasibility of simultaneous electricity generation and treatment of swine farm wastewater using microbial fuel cells (MFCs) was examined. Two single-chamber MFCs containing an anode filled with different ratio of graphite felt and stainless-steel cross strip was used in all tests. The proportion of stainless-steel cross strip to graphite felt in the anode of control microbial fuel cell (CMFC) was higher than that of swine microbial fuel cell (SMFC) to reduce construction costs. SMFCs produced a stable current of 18 mA by swine wastewater with chemical oxygen demand (COD) of $3.167{\pm}80\;mg/L$ after enriched. The maximum power density and current density of SMFCs were $680\;mW/m^3$ and $3,770\;mA/m^3$, respectively. In the CMFC, power density and current density was lower than that of SMFC. CODs decreased by the SMFC and CMFC from $3.167{\pm}80$ to $865{\pm}21$ and $930{\pm}14\;mg/L$, achieving 72.7% and 70.6% COD removal, respectively. The suspended solid (SS) of both fuel cells was also reduced over 99% ($4,533{\pm}67$ to $24.0{\pm}6.0\;mg/L$). The concentration of nutritive salts, ${NH_4}^+$, ${NO_3}^-$, and ${PO_4}^{3-}$, dropped by 65.4%, 57.5%, and 73.7% by the SMFC, respectively. These results were similar with those of CMFC. These results show that the microbial fuel cells using electrode with mix stainless-steel cross strip and graphite felt can treat the swine wastewater simultaneously with an electricity generation from swine wastewater.

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang (중국 신장 위그루자치구 바이청현 보즈구얼의 A형화강암류의 지화학 및 지르콘 미량원소특징에 대한 연구)

  • Yin, Jingwu;Liu, Chunhua;Park, Jung Hyun;Shao, Xingkun;Yang, Haitao;Xu, Haiming;Wang, Jun
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.179-198
    • /
    • 2013
  • The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.