• Title/Summary/Keyword: Oxygen-Enriched Combustion

Search Result 38, Processing Time 0.021 seconds

A Study on the Evaluation of DCSG Steam Efficiency of Oil Sand Plants for Underground Resources Development (지하자원개발을 위한 오일샌드플랜트의 DCSG 증기생산효율 평가에 관한 연구)

  • Young Bae Kim;Kijin Jeong;Woohyun Jung;Seok Woo Chung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • Steam assisted gravity drainage(SAGD) is a process that drills well in the underground oil sands layer, injects hightemperature steam, lowers the viscosity of buried bitumen, and recovers it to the ground. Recently, direct contact steam generator(DCSG) is being developed to maximize steam efficiency for SAGD process. The DCSG requires high technology to achieve pressurized combustion and steam generation in accordance with underground pressurized conditions. Therefore, it is necessary to develop a combustion technology that can control the heat load and exhaust gas composition. In this study, process analysis of high-pressurized DCSG was conducted to apply oxygen enrichment technology in which nitrogen of the air was partially removed for increasing steam production and reducing fuel consumption. As the process analysis conditions, methane as the fuel and normal air or oxygen enriched air as the oxidizing agent were applied to high-pressurized DCSG process model. A simple combustion reaction program was used to calculate the property variations for combustion temperature, steam ratio and residual heat in exhaust gas. As a major results, the steam production efficiency of DCSG using the pure oxygen was about 6% higher than that of the normal air due to the reducing nitrogen in the air. The results of this study will be used as operating data to test the demonstration device.

The Effects of Advanced Reburning with SNCR on NOx and CO Reduction (무촉매 환원법이 적용된 응용 재연소 방법에 의한 NOx와 CO의 저감 효과)

  • Lee Chang-Yeop;Kim Dong-Min;Baek Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.788-795
    • /
    • 2006
  • From the view of the environmental protection against the use of fossil fuels, the great of efforts have been exerted to find an effective method which is not only pollutant reduction but also high thermal efficiency. Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the hybrid effects of reburning and selective non-catalytic reaction (SNCR) on $NO_x/CO$ reduction from oxygen-enriched LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and $NO_x$ generation were observed to increase by oxygen-enriched combustion, but due to its hybrid effects of reburning and SNCR, $NOx/CO$ concentration in the downstream has considerably decreased.

Characteristic Study of LNG Combustion in the mixture of $O_2/CO_2$ ($O_2/CO_2$ 혼합조건에 따른 LNG 연소특성해석)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.647-653
    • /
    • 2007
  • The ultimate objective of this study is to develop a reliable oxygen-enriched combustion techniques especially for the case of the flue gas recycling in order to reduce the $CO_2$ emissions from practical industrial boilers. To this end a systematic numerical investigation has been performed, as a first step, for the resolution of the combusting flame characteristics of lab-scale LNG combustor. One of the important parameters considered in this study is the level of flue gas recycling calculated in oxygen enriched environment. As a summary of flame characteristics, for the condition of 100% pure $O_2$ as oxidizer without any flue gas recycling, the flame appears as long and thin laminar-like shape with relatively high flame temperature. The feature of high peak of flame temperature is explained by the absence of dilution and heat loss effects due to the presence of $N_2$ inert gas. The same reasoning is also applicable to the laminarized thin flame one, which is attributed to the decrease of the turbulent mixing. These results are physically acceptable and consistent and further generally in good agreement with experimental results appeared in open literature. As the level of $CO_2$ recycling increases in the mixture of $O_2/CO_2$, the peak flame temperature moves near the burner region due to the enhanced turbulent mixing by the increased amount of flow rate of oxidizer stream. However, as might be expected, the flue gas temperature decreases due to presence of $CO_2$ gas together with the inherent feature of large specific heat of this gas. If the recycling ratio more than 80%, gas temperatures drop so significantly that a steady combustion flame can no longer sustain within the furnace. However, combustion in the condition of 30% $O_2/70% $ $CO_2$ can produce similar gas temperature profiles to those of conventional combustion in air oxidizer. An indepth analyses have been made for the change of flame characteristics in the aspect of turbulent intensity and heat balance.

A Study of Stable Isotopic Variations of Antarctic Snow by Albedo Differences (알베도 변화에 의한 남극 눈 안정동위원소의 변동에 관한 연구)

  • Lee, Jeonghoon;Han, Yeongcheol;Ham, Ji-Young;Na, Un-Sung
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Snow albedo can be decreased if there are any impurities on the snow surface other than the snow itself. Due to the decrease of snow albedo, melting rates of surface snow can increase, which is very crucial in climate change and hydrogeology in many parts of the world. Anthropogenic black carbons caused by the incomplete combustion of fossil fuel affect snow and tephra particles generated by geologic volcanic activities reduce snow albedo. In this study, we investigated isotopic compositions for snow covered by tephra particles and compared with this with clean snow. Isotopic compositions of snow with tephra statistically show more enriched than those of clean snow (p<0.02). This can be explained by the fact that snow becomes enriched in $^{18}O$ or D relative to meltwater as melting rates are increased. In addition, the slopes of the linear regression between oxygen and hydrogen for snow with tephra and clean snow are 6.7 and 8, respectively, and the latter is similar to that of the global meteoric water line of 8. Therefore, we can conclude that snow impurities control the isotopic compositions of snow, which is very crucial in the study of climate change and hydrogeology. To quantitatively explain these observations, melting experiments and numerical approaches are required.

Experimental Study of Char Oxidation and Kinetic Rate in O2/CO2 and O2/N2 Environments (O2/CO2조건과 O2/N2조건에서의 촤 연소특성 및 산화 반응성에 관한 실험적 연구)

  • Kim, Song-Gon;Lee, Cheon-Seong;Lee, Byoung-Hwa;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1101-1109
    • /
    • 2010
  • We investigated the combustion rate and kinetic rate of char when burning in oxygen-enriched atmospheres with either an $N_2$ or $CO_2$ bath gas in a drop tube furnace. The experiments were performed with sub-bituminous coal (Adaro) and bituminous coal (Coal valley) under atmospheric pressure conditions. Two different coals were investigated over 12 to 30 vol% oxygen and furnace temperatures of 900, 1100, and $1300^{\circ}C$. For both coals, the particle temperature and overall reaction rate are lower in the $CO_2$ bath gas. However, analysis of single-particle data shows that the surface-specific burning rate of char oxidation is similar in both gases. In addition, the kinetic rate and activation energy for each coal were similar for both gases. Generally, the particle temperature and overall reaction rate of sub-bituminous coal are higher than those of bituminous coal.

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Assessment on the Flame Retardancy for Polyethylene/Montmorillonite Nanocomposite (Polyethylene/Montmorillonite Nanocomposite의 난연성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.72-76
    • /
    • 2006
  • Polymer/clay nanocomposites have generated considerable interests in the past decade because adding just tiny amount of clay to the polymer matrix could produce a dramatic enhancement in physical, thermal and mechanical properties. Smectite clays, such as montmorillonite (MMT), are of great industrial value because of their high aspect ratio, plate morphology, intercalative capacity, natural abundance and low cost. In this study, PE/MMT nanocomposites were directly prepared by melt intercalating PE and the modified clay. The nanostructure was verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their flame retardant properties were measured and discussed by limiting oxygen index (LOI), char yield and smoke mass concentration. And their thermal stabilities were measured by differential thermogravimetric (DTG) and thermogravimetric analysis (TGA). The PE/MMT nanocomposites proved more effective the conventional composites in reinforcement. Two functions in the thermal stability of the PE/MMT nanocomposite, one is the barrier effect to improve the thermal stability, and another is catalysis, leading to a decrease of the thermal stability. The flammability was greatly decreased due to the formation of the clay-enriched protective char during the combustion.

Preparation of PES Hollow Fiber Membranes and Their $O_2/N_2$ Permeation Properties (폴리이서설폰 중공사막의 제조 및 $O_2/N_2$ 투과특성)

  • Park, Sung-Ryul;Chang, Bong-Jun;Ahn, Hyo-Seong;Kim, Dong-Kwon;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.62-71
    • /
    • 2011
  • Highly enriched oxygen is used in energy-efficient combustion due to decreased non-flammable nitrogen, while high purity nitrogen is used for explosion proof in the LNG ships and keeping the freshness of green stuffs. Membrane technology can be used in these $O_2$ and $N_2$ generation with low energy consumption. In this study, PES was used as a membrane material and 1-methyl-2-pyrollidone (NMP) and acetone were employed as a good solvent and nonsolvent addictive (swelling agent to PES), respectively. Dope solutions were prepared by changing the content of acetone (0, 6.5, 15, 25, 31.5 wt%) in 37 wt% PES solutions. Hollow fiber spinning was performed at 0~10 cm of air-gap distances for each dope solution. $O_2/N_2$ selectivity and permeability were investigated by comparing of hollow fibers coated or not by silicons. $O_2/N_2$ selectivity increased and permeance of $O_2$ and $N_2$ decreased with increasing air-gap height independently of acetone addictions. Optimized PES hollow fibers were obtained with 37/6.5/56.5 wt% PES/acetone/NMP dope solution and 10 cm air-gap, which showed 7.3 of $O_2/N_2$ selectivity and 4.3 GPU of $O_2$ permeability after silicon coating.