• Title/Summary/Keyword: Oxygen ion conductivity

Search Result 79, Processing Time 0.032 seconds

New Cryptand Complexes of Lanthanides(Ⅲ) and Dioxouranium(Ⅵ) Nitrates

  • Oh-Jin Jung;Chil-Nam Choi;Hak-Jin Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.130-137
    • /
    • 1991
  • The following new cryptand 221 complexes of lanthanides(Ⅲ) and dioxouranium(Ⅵ) nitrate have been synthesized: $(Ln(C_{16}H_{32}N_2O_5)(H_2O)_2(NO_3)_3\ and \((UO_2)_2(C_{16}H_{32}N_2O_5)(H_2O)_4(NO_3)_4$. These complexes have been identified by elemental analysis, moisture titration, conductivity measurements and various spectroscopic techniques. The proton and carbon-13 NMR as well as calorimetric measurements were used to study the interaction of cryptand 221 with La(Ⅲ), Pr(Ⅲ ), Ho(Ⅲ) and $UO_2(Ⅱ)$ ions in nonaqueous solvents. The bands of metal-oxygen atoms, metal-nitrogen atoms and O-U-O in the IR spectra shift upon complexation to lower frequencies, and the vibrational spectra ({\delta}NMN$) of metal-amide complexes in the crystalline state exhibit lattice vibrations below 300 $cm^{-1}$. The NMR spectra of the lanthanides(Ⅲ) and dioxouranium(Ⅵ) nitrate complexes in nonaqueous solvents are quite different, indicating that the ligand exists in different conformation, and also the $^1H$ and $^{13}C-NMR$ studies indicated that the nitrogen atom of the ring has greater affinity to metal ions than does the oxygen atom, and the planalities of the ring are lost by complexation with metal ions. Calorimetric measurements show that cryptand 221 forms more stable complexes with $La^{3+}$ and $Pr^{3+}$ ions than with $UO^{22+}$ ion, and $La^{3+}/Pr^{3+}$ and $UO^{22+}/Pr^{3+}$ selectivity depends on the solvents. These changes on the stabilities are dependent on the basicity of the ligand and the size of the metal ions. The absorption band (230-260 nm) of the complex which arises from the direct interaction of macrocyclic donor atoms with the metal ion is due to n-{\delta}*$ transition and also that (640-675 nm) of $UO^{22+}$-cryptand 221 complex, which arises from interaction between two-dioxouranium(Ⅵ) ions in being out of cavity of the ligand ring is due to d-d* transition.

Micro Emulsion Synthesis of LaCoO3 Nanoparticles and their Electrochemical Catalytic Activity

  • Islam, Mobinul;Jeong, Min-Gi;Ghani, Faizan;Jung, Hun-Gi
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.121-130
    • /
    • 2015
  • The micro emulsion method has been successfully used for preparing perovskite LaCoO3 with uniform, fine-shaped nanoparticles showing high activity as electro catalysts in oxygen reduction reactions (ORRs). They are, therefore, promising candidates for the air-cathode in metal-air rechargeable batteries. Since the activity of a catalyst is highly dependent on its specific surface area, nanoparticles of the perovskite catalyst are desirable for catalyzing both oxygen reduction and evolution reactions. Herein, LaCoO3 powder was also prepared by sol-gel method for comparison, with a broad particle distribution and high agglomeration. The electro catalytic properties of LaCoO3 and LaCoO3-carbon Super P mixture layers toward the ORR were studied comparatively using the rotating disk electrode technique in 0.1 M KOH electrolyte to elucidate the effect of carbon Super P. Koutecky-Levich theory was applied to acquire the overall electron transfer number (n) during the ORR, calculated to be ~3.74 for the LaCoO3-Super P mixture, quite close to the theoretical value (4.0), and ~2.7 for carbon-free LaCoO3. A synergistic effect toward the ORR is observed when carbon is present in the LaCoO3 layer. Carbon is assumed to be more than an additive, enhancing the electronic conductivity of the oxide catalyst. It is suggested that ORRs, catalyzed by the LaCoO3-Super P mixture, are dominated by a 2+2-electron transfer pathway to form the final, hydroxyl ion product.

Fabrication of Thin Solid Oxide Film Fuel Cells

  • Jee, Young-Seok;Chang, Ik-Whang;Son, Ji-Won;Lee, Jong-Ho;Kang, Sang-Kyun;Cha, Suk-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.82-85
    • /
    • 2010
  • Recently, thin film processes for oxides and metal deposition, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), have been widely adapted to fabricate solid oxide fuel cells (SOFCs). In this paper, we presented two research area of the use of such techniques. Gadolinium doped ceria (GDC) showed high ionic conductivity and could guarantee operation at low temperature. But the electron conductivity at low oxygen partial pressure and the weak mechanical property have been significant problems. To solve these issues, we coated GDC electrolyte with a nano scale yittria-doped stabilized zirconium (YSZ) layer via atomic layer deposition (ALD). We expected that the thin YSZ layer could have functions of electron blocking and preventing ceria from the reduction atmosphere. Yittria-doped barium zirconium (BYZ) has several orders higher proton conductivity than oxide ion conductor as YSZ and also has relatively high chemical stability. The fabrication processes of BYZ is very sophisticated, especially the synthesis of thin-film BYZ. We discussed the detailed fabrication processes of BYZ as well as the deposition of electrode. This paper discusses possible cell structure and process flow to accommodate such films.

Characteristics of Stream Water Quality in the Northeastern Part of Puk'ansan National Park (북한산국립공원(北漢山國立公園) 북동사면(北東斜面) 일대(一帶) 계류수질(溪流水質) 특성(特性))

  • Park, Jae Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.101-110
    • /
    • 1999
  • This research was investigated to check characteristics of stream water quality at four points to analyze the characteristics of stream water in the northeastern part of Puk'ansan National Park during a period of July to November, 1998. The results are as follows. The level of average pH(6.56) and dissolved oxygen($10.22mg/{\ell}$) in the stream water quality on northeastern area in Puk'ansan National Park were at the level of the first class in the quality of river water quality standard. Also, the water in these streams was soft and equilibrated the ration and anion. Electrical conductivity in the stream water was correlated with total amount of ion and number of visitors, but conversely correlated with pH. And the number of visitors influenced stream water quality pollution. The multiple regression equations for electrical conductivity were well explained by pH, Zn and $Mg^{2+}$ statistically.

  • PDF

Physical Properties of the Nonstoichiometric Perovskite $Dy_{1-x}Sr_xCoO_{3-y}$ System

  • 정수경;김민규;김규홍;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.794-798
    • /
    • 1996
  • Solid solutions of the nonstoichiometric Dy1-xSrxCoO3-y system with the compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been synthesized by the solid state reaction at 1000 ℃ under atmospheric air pressure. The crystallographic structures of the solid solutions are analyzed by the powder X-ray diffraction patterns at room temperature. The analyses assign the compositions of x=0.00 and 0.25 to the orthorhombic system with space group of Pbnm/D2h16, the compositions of x=0.50 and 0.75 to the tetragonal system like a typical SrCoO2.86, and the composition of x=l.00 or SrCoO2.50 to the brownmillerite type system with space group of I**a. The reduced lattice volumes increase with x value due to the larger radius of Sr2+ ion than that of Dy3+ ion. The mole ratio of Co4+ ion to total Co ion with mixed valence state between Co3+ and Co4+ ions at B sites or τ value has been determined by an iodometric titration. All the samples except for the DyCoO3 compound show the mixed valnce state and thus the composition of x=0.50 has the maximum τ value in the system. The oxygen vacancies increasing with x value are randomly distributed over the crystal lattice except for the composition of x=l.00 which have the ordering of the oxygen vacancies. The nonstoichiometric chemical formulas of the Dy1-xSrxCo3+1-τCo4+τO3-(x-τ)/2 system are formulated from the x, τ, and y values. The electrical conductivity in the temperature range of 100 to 900 K increases with τ value linearly because of positive holes of the Co4+ ions in π* band as a conducting carrier. The activation energy of the x=0.50 as Ea=0.17 eV is minimum among other compouds. Broad and high order transition due to the overlap between σ* and π* bands broadened by the thermal activation is observed near 1000 K and shows a low temperature-semiconducting behavior. Magnetic properties following the Currie-Weiss law show the low to high spin transition in the cobaltate perovskite. Especially, the composition of x=0.75 presents weak ferromagnetic behavior due to the Co3+-O2--Co4+ indirect superexchange interaction.

Analysis of Influential Factors from Rainfall to Stream Water Quality in Small Forested Watershed - pH, dissolved oxygen, electrical conductivity - (산림유역내(山林流域內) 강수(降水)로부터 계류수질(溪流水質)에 미치는 영향인자(影響因子) 분석(分析) - pH, 용존산소(溶存酸素), 전기전도도(電氣傳導度) -)

  • Park, Jae-Hyeon;Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.489-501
    • /
    • 1997
  • This research was conducted to analyze the influence of the environmental factors on water quality such as pH, dissolved oxygen, and electrical conductivity of rainfall, throughfall, soil water(A and B layer), and stream water quality at a small forested watershed. Rainfall, throughfall, soil water(A and B layer), and stream water were sampled at the study sites in Kwanak Arboretum, Seoul National University in Mt. Kwanak for 14 months(Jul. 1, 1996~Aug. 31, 1997). Average rainfall pH value was 6.06(ranged from 5.02 to 6.60). Acid rain frequency(less than pH 5.6) was 16.7%. The lowest rainfall pH value was 5.02. Average of pH values in hydrological processes were decreasing in the following order, stream water>soil water [Prunus serrulata var, spontanea(B layer>A layer)]>throughfall(Prunus serrulata var. spontanea)>soil water [Carpinus laxiflora(B layer >A layer)]>throughfall(Carpinus laxiflora)>rainfall>soil water [Pinus rigida(B layer>A layer)]>throughfall(Pinus rigida). pH values of throughfall in Prunes serrulata var. spontanea and Carpinus laxiflora were higher in Pines rigida. Average of dissolved oxygen values in hydrological processes were decreasing in the order, stream water>throughfall(Carpinus laxiflora>Prunus serrulata var, spontanea>Pines rigida)>rainfall>soil water [Prunes serrulata var. spontanea(A layer)>Pines rigida(A layer)>Carpinus laxiflora(A layer)>Prunes serrulata var. spontanea(B layer)>Pines rigida(B layer)>Carpinus laxiflora(B layer)]. And average electrical conductivity values in hydrological processes were decreasing in the order, soil water (B layer>A layer)>throughfall(Pinus rigida>Prunes serrulata var, spontanea>Carpinus laxiflora)>stream water>rainfall. Multiple regression equations of electrical conductivity and $Mg^{2+}$, $Na^+$, total amount of cation, total amount of ion, and no. of before non-rain days in rainfall, throughfall, soil and stream water shows high significance(Multi R; 0.84).

  • PDF

Synthesis and Characterization of CuCo2O4 Nanofiber Electrocatalyst for Oxygen Evolution Reaction (산소발생반응을 위한 CuCo2O4 나노섬유 전기화학 촉매 합성 및 특성 분석)

  • Won, Mi So;Jang, Myeong-Je;Lee, Kyu Hwan;Kim, Yang Do;Choi, Sung Mook
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.539-548
    • /
    • 2016
  • The non-noble 1D nanofibers(NFs) prepared by electrospinning and calcination method were used as oxygen evolution reaction (OER) electrocatalyst for water electrolysis. The electrospinning process and rate of solution composition was optimized to prepare uniform and non-beaded PVP polymer electrospun NFs. The diameter and morphology of PVP NFs changed in accordance with the viscosity and ion conductivity. The clean metal precursor contained electrospun fibers were synthesized via the optimized electrospinning process and solution composition. The calcined $CuCo_2O_4$ NFs catalyst showed higher activity and long-term cycle stability for OER compared with other $Co_3O_4$, $NiCo_2O$ NF catalysts. Furthermore, the $CuCo_2O_4$ NFs maintained the OER activity during long-term cycle test compared with commercial $CuCo_2O_4$ nanoparticle catalyst due to unique physicochemical and electrochemical properties by1D nanostructure.

Physical and Chemical Properties of (Sr,Mg)FeO3-y System Heat-treated in N2 (N2 분위기에서 열처리한 (Sr,Mg)FeO3-y계의 물리 및 화학적 성질)

  • Lee, Eun-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.642-647
    • /
    • 2015
  • The perovskite solid solutions of the $Sr_{1-x}Mg_xFe{^{3+}}_{1-{\tau}}Fe{^{4+}}_{\tau}O_{3-y}$ system (x=0.0, 0.1, 0.2, and 0.3) were synthesized in $N_2$ at $1,150^{\circ}C$. X-ray powder diffraction study assured that all the four samples had cubic symmetries(SM-0: $3.865{\AA}$, SM-1: $3.849{\AA}$, SM-2: $3.833{\AA}$, and SM-3: $3.820{\AA}$) and that the lattice volumes decreased steadily from $57.7{\AA}^3$ to $55.7{\AA}^3$ with x values. The nonstoichiometric chemical formulas were determined by Mohr salt analysis and with the increase of x values the amounts of $Fe^{4+}$ ion and oxygen were decreased simultaneously. Thermal analysis showed that SM-0 started to lose its oxygen at $450^{\circ}C$ and SM-1, Sm-2, and SM-3 began to lose their oxygen at around $350{\sim}400^{\circ}C$. SM-0 showed almost reversible weight change in the cooling process. All the samples exhibited semiconducting behaviors in the temperature range of $10{\sim}400^{\circ}C$. Conductivities of the 4 samples were decreased in the order of SM-0, SM-1, SM-2, and SM-3 at constant temperature. The activation energies of the conductions were in the range of 0.176 eV~0.244 eV.

Effect of Calcination Temperature of Size Controlled Microstructure of LiNi0.8Co0.15Al0.05O2 Cathode for Rechargeable Lithium Battery

  • Park, Tae-Jun;Lim, Jung-Bin;Son, Jong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.357-364
    • /
    • 2014
  • Size controlled, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathode powders were prepared by co-precipitation method followed by heat treatment at temperatures between 750 and $850^{\circ}C$. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance. The synthesized $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ has a good electrochemical performance with an initial discharge capacity of $190mAhg^{-1}$ and good capacity retention of 100% after 30 cycles at 0.1C ($17mAg^{-1}$). The capacity retention of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ is better than that at 800 and $850^{\circ}C$ without capacity loss at various high C rates. This is ascribed to the minimized cation disorder, a higher conductivity, and higher lithium ion diffusion coefficient ($D_{Li}$) observed in this material. In the differential scanning calorimetry DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by calcined at high temperature, and this decrease is especially at $850^{\circ}C$. This behavior implies that the high temperature calcinations of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ prevent phase transitions with the release of oxygen.

Additivity Factors Analysis of Compositions in Li2O-TeO2-ZnO Glass System Determined from Mixture Design (혼합물설계법에 의한 Li2O-TeO2-ZnO 유리의 물성에 대한 조성의 가성성인자 분석)

  • Jung, Young-Joon;Lee, Kyu-Ho;Kim, Tae-Ho;Kim, Young-Seok;Na, Young-Hoon;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.617-622
    • /
    • 2008
  • In this study, the additivity factors of compositions to density and glass transition point ($T_g$) in a $xLi_2O-(1-x)[(1-y)TeO_2-yZnO]$ (0$T_g$ was discussed. As a method for predicting the relation between glass structure and ionic conductivity, density was measured by the Archimedes method. The glass transition point was analyzed to predict the relation between ionic conductivity and the bonding energy between alkali ions and non-bridge oxygen (NBO). The relation equations showing the additivity factor of each composition to the two properties are as follows: Density(g/$cm^3$) = $2.441x_1\;+\;5.559x_2\;+\;4.863x_3\;T_g(^{\circ}C)$ = $319x_1\;+\;247x_2\;+\;609x_3\;-\;1950x_1x_3$ ($x_1$ : fraction of $Li_2O$, $x_2$ : fraction of $TeO_2$, $x_3$ : fraction of ZnO) The density decreased as $Li_2O$ content increased. This was attributed to change of the $TeO_2$ structure. From this structural result, the electric conductivity of the glass samples was predicted following the ionic conduction mechanism. Finally, it is expected that electric conductivity will increase as the activation energy for ion movement decreases.