• Title/Summary/Keyword: Oxygen demand

Search Result 926, Processing Time 0.025 seconds

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Effects of Operational Conditions on Performance

  • Pham, Hai The;Vu, Phuong Ha;Nguyen, Thuy Thu Thi;Bui, Ha Viet Thi;Tran, Huyen Thanh Thi;Tran, Hanh My;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1607-1623
    • /
    • 2019
  • Sediment bioelectrochemical systems (SBESs) can be integrated into brackish aquaculture ponds for in-situ bioremediation of the pond water and sediment. Such an in-situ system offers advantages including reduced treatment cost, reusability and simple handling. In order to realize such an application potential of the SBES, in this laboratory-scale study we investigated the effect of several controllable and uncontrollable operational factors on the in-situ bioremediation performance of a tank model of a brackish aquaculture pond, into which a SBES was integrated, in comparison with a natural degradation control model. The performance was evaluated in terms of electricity generation by the SBES, Chemical oxygen demand (COD) removal and nitrogen removal of both the tank water and the tank sediment. Real-life conditions of the operational parameters were also experimented to understand the most close-to-practice responses of the system to their changes. Predictable effects of controllable parameters including external resistance and electrode spacing, similar to those reported previously for the BESs, were shown by the results but exceptions were observed. Accordingly, while increasing the electrode spacing reduced the current densities but generally improved COD and nitrogen removal, increasing the external resistance could result in decreased COD removal but also increased nitrogen removal and decreased current densities. However, maximum electricity generation and COD removal efficiency difference of the SBES (versus the control) could be reached with an external resistance of $100{\Omega}$, not with the lowest one of $10{\Omega}$. The effects of uncontrollable parameters such as ambient temperature, salinity and pH of the pond (tank) water were rather unpredictable. Temperatures higher than $35^{\circ}C$ seemed to have more accelaration effect on natural degradation than on bioelectrochemical processes. Changing salinity seriously changed the electricity generation but did not clearly affect the bioremediation performance of the SBES, although at 2.5% salinity the SBES displayed a significantly more efficient removal of nitrogen in the water, compared to the control. Variation of pH to practically extreme levels (5.5 and 8.8) led to increased electricity generations but poorer performances of the SBES (vs. the control) in removing COD and nitrogen. Altogether, the results suggest some distinct responses of the SBES under brackish conditions and imply that COD removal and nitrogen removal in the system are not completely linked to bioelectrochemical processes but electrochemically enriched bacteria can still perform non-bioelectrochemical COD and nitrogen removals more efficiently than natural ones. The results confirm the application potential of the SBES in brackish aquaculture bioremediation and help propose efficient practices to warrant the success of such application in real-life scenarios.

Study on Characteristic of Pyropia Dentata Three Cultivar in Haenam Aquafarm, Jellanam-do (전남 해남에서 잇바디돌김 3종의 양식 특성 연구)

  • Han, M.K.;Jeong, D.S.;Kim, C.W.;Choi, S.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.43-50
    • /
    • 2021
  • Growth tests on the Yuldo, Supum1 and Supum2 cultivars of Pyropia dentata were performed at the Eoran and Imha aquafarm, Haenam in Jeollanamdo, from October to December in 2017. The mean water temperature ranged from 5.4 to 26.4 ℃. In Eoran aquafarm (flating raft method), dissolved total nitrogen (DTN), dissolved total phosphorus (DTP), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) ranged from 0.091 to 0.181 mg/L, 0.007 to 0.019 mg/L, 0.114 to 0.187 mg/L, 0.008 to 0.033 mg/L and 0.200 to1.000 mg/L, respectively. In Imha aquafarm (fixed pold method), DTN, DTP, TN, TP and COD ranged from 0.118 to 0.276 mg/L, 0.005 to 0.024 mg/L, 0.155 to 0.305 mg/L, 0.009 to 0.042 mg/L and 0.300 to1.400 mg/L, respectively. In order to investigate the number of conchospores attached on the Pyropia net, which was cut into about 4cm long. The mean number of conchospores of Yuldo, Supum1 and Supum2 cultivars were 39.5, 26.5, 72.5, respectively. Young thalli were harvested two times at Eoran aquafarm, and three times at Imha aquafarm. In eoran aquafarm, the mean thallus length of Yuldo, Supum1 and Supum2 cultivars were 49.9, 46.0, 42.0 cm on October and 163, 126.0, 263.0 cm on November, respectively. The mean thallus width of Yuldo, Supum1 and Supum2 cultivars were 5.8, 4.6, 11.5 cm on October and 20.9, 11.5, 14.0 cm on November, respectively. In Imha aquafarm, the mean thallus length of Yuldo, Supum1 and Supum2 cultivars were 119.0, 60.9, 71.0 cm on October, 196.0, 132.0, 262.0 cm on November and 187.0, 281.0, 296.0 cm on December, respectively. The mean thallus width of Yuldo, Supum1 and Supum2 cultivars were 4.2, 3.4, 3.1 cm on October, 8.9, 6.2, 6.6 cm on November and 11.7, 11.6, 9.4 cm on December, respectively. In eoran aquafarm, contents of moisture, crude ash, crude lipid, crude protein and carbohydrate of three cultivars ranged from 11.64 to 20.15, 19.54 to 21.19, 0.00 to 0.18, 29.78 to 37.81, 29.16 to 29.71, respectively. In Imha aquafarm, contents of moisture, crude ash, crude lipid, crude protein and carbohydrate of three cultivars ranged from 8.43 to 9.15, 11.42 to 17.49, 0.00 to 0.00, 31.90 to 37.54, 36.30 to 42.24, respectively.

Investigation on the water quality challenges and benefits of buffer zone application to Yongdam reservoir, Republic of Korea (용담호의 홍수터 적용을 위한 문제점 및 이점 조사 연구)

  • Franz Kevin Geronimo;Hyeseon Choi;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.274-283
    • /
    • 2023
  • Buffer zones, an example of nature-based solutions, offer wide range of environmental, social and economic benefits due to their multifunctionality when applied to watershed areas promoting blue-green connectivity. This study evaluated the effects of buffer zone application to the water quality of Yongdam reservoir tributaries. Particularly, the challenges and improvement of the buffer zone design were identified and suggested, respectively. Water and soil samples were collected from a total of six sites in Yongdam reservoir from September 2021 to April 2022. Water quality analyses revealed that among the sites monitored, downstream of Sangjeonmyeon Galhyeonri (SG_W_D2) was found to have the highest concentration for water quality parameters turbidity, total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). This finding was attributed to the algal bloom observed during the sampling conducted in September and October 2021. It was found through the soil analyses that high TN and TP concentrations were also observed in all the agricultural land uses implying that nutrient accumulation in agricultural areas are high. Highest TN concentration was found in the agricultural area of Jeongcheonmyeon Wolpyeongri (JW_S_A) followed by Jucheonmyeon Sinyangri (JS_S_A) while the lowest TN concentration was found in the original soil of Sangjeonmyeon Galhyeonri (SG_S_O). Among the types of buffer zones identified in this study, Type II-A, Type II-B and Type III were found to have blue-green connectivity. However, initially, blue-green connectivity in these buffer zone types were not considered leading to poor design and poor performance. As such, improvement in the design considering blue-green network and renovation must be considered to optimize the performance of these buffer zones. The findings in this study is useful for designing buffer zones in the future.

The Spatio-temporal Distribution of Organic Matter on the Surface Sediment and Its Origin in Gamak Bay, Korea (가막만 표층퇴적물중 유기물량의 시.공간적 분포 특성)

  • Noh Il-Hyeon;Yoon Yang-Ho;Kim Dae-Il;Park Jong-Sick
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • A field survey on the spatio-temporal distribution characteristics and origins of organic matter in surface sediments was carried out monthly at six stations in Gamak Bay, South Korea from April 2000 to March 2002. The range of ignition loss(IL) was $4.6{\sim}11.6%(7.1{\pm}1.6%)$, while chemical oxygen demand(CODs) ranged from $12.25{\sim}99.26mgO_2/g-dry(30.98{\pm}19.09mgO_2/g-dry)$, acid volatile sulfide(AVS) went from no detection(ND)${\sim}10.29mgS/g-dry(1.02{\pm}0.58mgS/g-dry)$, and phaeopigment was $6.84{\sim}116.18{\mu}g/g-dry(23.72{\pm}21.16{\mu}g/g-dry)$. The ranges of particulate organic carbon(POC) and particulate organic nitrogen(PON) were $5.45{\sim}23.24 mgC/g-dty(10.34{\pm}4.40C\;mgC/g-dry)$ and $0.71{\sim}2.99mgN/g-dry(1.37{\pm}0.58mgN/g-dry)$, respectively. Water content was in the range of $43.1{\sim}77.6%(55.8{\pm}5.6%)$, and mud content(silt+clay) was higher than 95% at all stations. The spatial distribution of organic matter in surface sediments was greatly divided between the northwestern, central and eastern areas, southern entrance area from the distribution characteristic of their organic matters. The concentrations of almost all items were greater at the northwestern and southern entrance area than at the other areas in Gamak Bay. In particular, sedimentary pollution was very serious at the northwestern area, because the area had an excessive supply of organic matter due to aquaculture activity and the inflow of sewage from the land. These materials stayed longer because of the topographical characteristics of such as basin and the anoxic conditions in the bottom seawater environment caused by thermocline in the summer. The tendency of temporal change was most prominently in the period of high-water temperatures than low-water ones at the northwestern and southern entrance areas. On the other hand, the central and eastern areas did not show a regular trend for changing the concentrations of each item but mainly showed a higher tendency during the low-water temperatures. This was observed for all but AVS concentrations which were higher during the period of high-water temperature at all stations. Especially, the central and eastern areas showed a large temporal increase of AVS concentration during those periods of high-water temperature where the concentration of CODs was in excess of $20mgO_2/g-dry$. The results show that the organic matters in surface sediments in Gamak Bay actually originated from autochthonous organic matters with eight or less in average C/N ratio including the organic matters generated by the use of ocean, rather than terrigenous organic matters. However, the formation of autochthonous organic matter was mainly derived from detritus than living phytoplankton, indicated the results of the POC/phaeopigment ratio. In addition, the CODs/IL ratio results demonstrate that the detritus was the product of artificial activities such as dregs feeding and fecal pellets of farm organisms caused by aquaculture activities rather than the dynamic of natural ocean activities.

  • PDF

Removal Velocities of Pollutants under Different Wastewater Injection Methods in Constructed Wetlands for Treating Livestock Wastewater (인공습지 축산폐수처리장에서 주입방법에 따른 오염물질의 제거속도 평가)

  • Kim, Seong-Heon;Seo, Dong-Cheol;Park, Jong-Hwan;Lee, Choong-Heon;Lee, Seong-Tea;Jeong, Tae-Uk;Kim, Hong-Chul;Ha, Yeong-Rae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.272-279
    • /
    • 2012
  • In order to effectively treat livestock wastewater in constructed wetlands by natural purification method, removal velocities of pollutants under different injection methods in constructed wetlands were investigated. The removal velocities of chemical oxygen demand (COD), suspended solid (SS), T-N and T-P by continuous injection method were slightly rapid than those by intermittent injection method in full-scale livestock wastewater treatment plant. The removal velocity (K; $day^{-1}$) of COD by continuous injection method was $0.38\;d^{-1}$ for $1^{st}$ bed, $0.13\;d^{-1}$ for $2^{nd}$ bed, $0.17\;d^{-1}$ for $3^{rd}$ bed, $0.05\;d^{-1}$ for $4^{th}$ bed and $0.17\;d^{-1}$ for $5^{th}$ bed. The removal velocities (K; $day^{-1}$) of COD in $1^{st}$, $2^{nd}$, $3^{rd}$, $4^{th}$ and $5^{th}$ beds by intermittent injection method were $0.210\;d^{-1}$, $0.086\;d^{-1}$, $0.222\;d^{-1}$, $0.053\;d^{-1}$ and $0.137\;d^{-1}$, respectively. The removal velocity (K; $day^{-1}$) of SS by continuous injection method was $0.750\;d^{-1}$ for $1^{st}$ bed, $0.108\;d^{-1}$ for $2^{nd}$ bed, $0.120\;d^{-1}$ for $3^{rd}$ bed, $0.086\;d^{-1}$ for $4^{th}$ bed and $0.292\;d^{-1}$ for $5^{th}$ bed. The removal velocities (K; $day^{-1}$) of SS in $1^{st}$, $2^{nd}$, $3^{rd}$, $4^{th}$ and $5^{th}$ beds by intermittent injection method were $0.485\;d^{-1}$, $0.056\;d^{-1}$, $0.174\;d^{-1}$, $0.081\;d^{-1}$ and $0.227\;d^{-1}$, respectively. The removal velocity (K; $day^{-1}$) of T-N by continuous injection method was $0.361\;d^{-1}$ for $1^{st}$ bed, $0.121\;d^{-1}$ for $2^{nd}$ bed, $109\;d^{-1}$ for $3^{rd}$ bed, $0.047\;d^{-1}$ for $4^{th}$ bed and $0.155\;d^{-1}$ for $5^{th}$ bed. The removal velocities (K; $day^{-1}$) of T-N in $1^{st}$, $2^{nd}$, $3^{rd}$, $4^{th}$ and $5^{th}$ beds by intermittent injection method were $0.235\;d^{-1}$, $0.071\;d^{-1}$, $0.171\;d^{-1}$, $0.058\;d^{-1}$ and $0.126\;d^{-1}$, respectively. The removal velocity (K; $day^{-1}$) of T-P by continuous injection method was $0.803\;d^{-1}$ for $1^{st}$ bed, $0.084\;d^{-1}$ for $2^{nd}$ bed, $0.076\;d^{-1}$ for $3^{rd}$ bed, $0.118\;d^{-1}$ for $4^{th}$ bed and $0.301\;d^{-1}$ for $5^{th}$ bed. The removal velocities (K; $day^{-1}$) of T-P in $1^{st}$, $2^{nd}$, $3^{rd}$, $4^{th}$ and $5^{th}$ beds by intermittent injection method were $0.572\;d^{-1}$, $0.049\;d^{-1}$, $0.090\;d^{-1}$, $0.112\;d^{-1}$ and $0.222\;d^{-1}$, respectively.

Seasonal Variations of Water Quality in the Lower Part of the Nagdong River (낙동강 하류수질의 계절적 변화)

  • KIM Yong-Gwan;SHIM Hye-Kung;CHO Hak-Rae;YOU Sun-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.511-522
    • /
    • 1984
  • The Nagdong is one of the biggest rivers in Korea, which is very important water source not only for tap water of Pusan city but also for the industrial water. Therefore, authors tried to check the water quality year by year. In this experiment one hundred and twenty water samples collected from August 1983 to July 1984 were analyzed bacteriologically and physiologically. Fifteen sampling stations were established between near Samrangjin and estuary of the river. To evaluate the water quality, temperature, pH, chloride ion, salinity, chemical oxygen demand (COD), electrical conductivity, nutrients, total coliform, fecal coliform, fecal streptococcus, viable cell count and bacterial flora were observed. The variation of water temperature was ranged $-1.5{\sim}29.0^{\circ}C$ (Mean value $13.9{\sim}16.5^{\circ}C$), it in spring was higher as $10{\sim}15^{\circ}C$ about $10^{\circ}C$ than in winter and it in autumm was very stabilized as about $20^{\circ}C$ at each station. The pH variation of the samples was ranged $6.68{\sim}9.15$. The range of concentration of chloride ion and salinity varied $7.4{\sim}l,020.5$ mg/l and $1.05{\sim}33.0\%0$, respectively. Especially, salinity of the 3rd water war was the higher than others as $25.76{\sim}31.58\%0$. COD was ranged $1.45{\sim}14.94$ mg/l and the lower part of the Nagdong River was heavily contaminated by domesitc sewage and waste water from the adjacent factor area. The range of electrical conductivity was $1.360{\times}10^2{\sim}5.650{\times}10^4{\mu}{\mho}/cm$ and that was by far higher the estuary than the upper. Concentration of nutrients were $0.008{\sim}0.040$ mg/l (Mean value $0.019{\sim}0.068$ mg/l) for $NO_2-N,\;0.038{\sim}5.253$ mg/l ($0.351{\sim}2.347$ mg/l) for $NO_3-N,\;0.100{\sim}2.685$ mg/l($0.117{\sim}1.380$ mg/l) for $NH_4-N,\;0.003{\sim}0.084$ mg/l($0.014{\sim}0.065$ mg/l) for $PO_4-P$ and $0.154{\sim}6.123$ mg/l ($1.165{\sim}3.972$ mg/l) for $SiO_2-Si$, respectively. Usually nutrients contents of the water in the upper part(included station 1 to 5) were higher than those of the estuarine area. The bacterial density of the samples ranged 7.3 to 460,000/100 ml for total coliforms, 3.6 to 460,000/100 ml for fecal coliform, $0{\sim}46,000/100ml$ for fecal streptococcus and $<30{\sim}1.2{\times}10^5/ml$ for viable cell count. Composition of coliform was $28\%$ Escherichia coli group, $18\%$ Citrobacter freundii group, $31\%$ Enterobacter aerogenes group and $22\%$ others. Predominant species among the 659 strains isolated from the samples were Pseudomonas spp. ($42\%$), Flavobacterium spp. ($20\%$) and Moraxella spp. ($12\%$).

  • PDF