• Title/Summary/Keyword: Oxygen chemisorption

Search Result 22, Processing Time 0.023 seconds

Electrical Properties of Pure and Cadmium-Doped Indium Sesquioxide

  • Lee, Sung-Han;Lee, Jong-Hwan;Kim, Keu-Hong;Jun, Jong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.418-422
    • /
    • 1989
  • Cadmium-doped indium sesquioxide systems with a variety of CdO mol % were prepared to investigate the effect of doping on the electrical properties of indium sesquioxide. The electrical conductivities of pure $In_2O_3$ and Cd-doped $In_2O_3$ systems were measured in the temperature range from 25 to $1200^{\circ}C$ and $P_O_2$ range from $10^{-7}$ to $10^{-1}$ atm, and the thermoelectric power was measured in the same temperature range. The electrical conductivity and thermopower decreased with increasing CdO mol % indicating that all the samples are n-type semiconductors. The electrical conductivities of pure $In_2O_3$ and lightly doped $In_2O_3$ were considerably affected by the chemisorption $O_2$ at temperatures of 400 to $560^{\circ}C$ and then gaseous oxygen was reversibly chemisorbed at the temperature. The predominant defects in $In_2O_3$ are believed to be triply-charged interstitial indiums at temperatures above $560^{\circ}C$ and oxygen vacancies below $560^{\circ}C$. In Cd-doped $In_2O_3$ systems, cadmium acts as an electron acceptor and inhibits the transfer of lattice indium to interstitial sites, which give rise to the decrease of the electrical conductivity.

Interaction of oxygen with the ordered Ni3Al(111) alloy surface: adsorption and oxide islands formation at 800 K and 1000 K (Ordered Ni3Al(111) 합금표면과 산소와의 상호작용 : 800 K와 1000 K에서의 흡착과 oxide islands 형성연구)

  • Kang, B.C.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.322-329
    • /
    • 2007
  • The interaction of oxygen with the ordered $Ni_3Al(111)$ alloy surface at 800 K and 1000 K has been investigated using LEED, STM, HREELS, UPS, and PAX. The clean $Ni_3Al(111)$ surface exhibits a "$2{\times}2$" LEED pattern corresponding to the ordered bulk-like terminated surface structure. For an adsorption of oxygen at 800 K, LEED shows an unrelated oxygen induced superstructure with a lattice spacing of $2.93\;{\AA}$ in addition to the ($1{\times}1$) substrate spots. The combined HREELS and the UPS data point to an oxygen chemisorption on threefold aluminum sites while PAX confirms an islands growth of the overlayer. Since such sites are not available on the $Ni_3Al(111)$ surface, we conclude the buildup of an oxygen covered aluminum overlayer. During oxygen exposure at 1000 K, however, we observe the growth of ${\gamma}'-Al_2O_3$ structure on the reordered $Ni_3Al(111)$ substrate surface. This structure has been identified by means of HREELS and STM. The HREELS data will show that at 800 K the oxidation shows a very characteristic behavior that cannot be described by the formation of an $Al_2O_3$ overlayer. Moreover, the STM image shows a "Strawberry" structure due to the oxide islands formation at 1000 K. Conclusively, from the oxygen interaction with $Ni_3Al(111)$ alloy surface at 800 K and 1000 K an islands growth of the aluminum oxide overlayer has been found.

Effect of Pt/Al2O3-based Catalysts on Removal Efficiency of Hydrogen (Pt/Al2O3계 촉매의 특성이 수소제어 활성에 미치는 영향 연구)

  • Won, Jong Min;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.221-229
    • /
    • 2017
  • In this study, a wet impregnation method was applied to catalysts based on the active metal Pt in order to confirm the oxidation characteristics of various commercial alumina supports at room temperature. The catalysts were characterized using XPS, CO-chemisorption, and BET. Various $Pt/Al_2O_3$ catalysts controlled the oxygen species of Pt by the electronegativity of electrons and charges when the catalyst was prepared according to the heat treatment conditions. The reason that the dispersion degree decreases with increasing Pt loading seems to be attributed to HT (Huttig Temperature) of Pt. In addition, the minimum hydrogen concentration that can be controlled at room temperature can control hydrogen from metallic Pt up to 1.0 vol% at over 70.09% in the catalyst.

Effect of Physico-chemical Properties of Pt/TiO2 Catalyst on CO Oxidation at Room Temperature (Pt/TiO2 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향 연구)

  • Kim, Sung Chul;Kim, Geo Jong;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.657-662
    • /
    • 2018
  • In this study, the effect of $Pt/TiO_2$ catalysts on the CO oxidation reaction at room temperature was investigated using various $TiO_2$ supports with different physical properties to compare and evaluate $Pt/TiO_2$ catalysts. Physicochemical properties of the catalyst were alanyzed using XPS, CO-chemisorption, BET, and CO-TPD. As a result, when the active particle diameter was smaller, while the metal dispersion and surface area were larger, the CO room temperature oxidation reaction was better. These physical properties increased the number of active sites, causing the target material to increase the adsorption amount of CO. In addition, when the $O_2$-consumption increased, the CO-room temperature oxidation reaction activity increased due to the excellent oxygen-transferring ability.

MO Study of CO Chemisorption and Oxidation on a Pt(100) Surface

  • Choe, Sang-Joon;Park, Dong-Ho;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.933-939
    • /
    • 1994
  • Using an atom superposition and electron delocalization molecular orbital (ASED-MO) method, we have investigated the vibrational and chemisorptive properties of adsorbates on a Pt(100) surface during CO oxidation. The calculated vibrational stretching frequency for a predicted structure of $[CO{\cdot}{\cdot}{\cdot}O]^*$ complex is 1642 $cm^{-1}$. The CO bond stretches by 0.05 ${\AA}$ when adsorbed on one-fold site, and is tilted by 30 ${\AA}$ from the surface normal. We find the decrease in CO vibrational frequency on going from the one-fold to the high coordination sites. Binding at the two-fold site is predicted to be favored for $Pt_{18}(100)$ and at the 1-fold site for $Pt_{23}(100)$. From the calculations of the steric interactions, we have found that pre-adsorbed oxygen modifies the surface so that CO is adsorbed on the one-fold site ordered in a $(\sqrt{2}{\times}{\sqrt}{2})R45^{\circ}$. Our results are in good agreement with recent experimental findings of Hong et al. [J.Phys. Chem. 1993, 97, 1258].

Hydrogen Production from Methane Reforming Reactions over Ni/MgO Catalyst

  • Wen Sheng Dong;No, Hyeon Seok;Zhong Wen Liu;Jeon, Gi Won;Park, Sang Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1323-1327
    • /
    • 2001
  • The catalyst Ni/MgO (Ni : 15 wt%) has been applied to methane reforming reactions, such as steam reforming of methane (SRM), partial oxidation of methane (POM), and oxy-steam reforming of methane (OSRM). It showed high activity and good stability in all the reforming reactions. Especially, it exhibited stable catalytic performance even in stoichiometric SRM (H2O/CH4 = 1). From TPR and H2 pulse chemisorption results, a strong interaction between NiO and MgO results in a high dispersion of Ni crystallite. Pulse reaction results revealed that both CH4 and O2 are activated on the surface of metallic Ni over the catalyst, and then surface carbon species react with adsorbed oxygen to produce CO.

Chemisorption and Oxidation of Methanol over V2O5 Catalyst - I. Chemisorptive Behaviors of CO and CH3OH - (V2O5 촉매상에서의 메탄올 흡탈착 및 산화반응 - I. CO와 CH3OH의 화학흡착 특성 -)

  • Kim, Eul-San;Choi, Ki-Hyouk;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 1994
  • The adsorptive behaviors of carbon monoxide and methanol over $V_2O_5$catalyst were studied by means of thermal desorptlon spectroscopy (TDS) under ultrahigh vacuum conditions. Carbon monoxide adsorbed on oxygen-deficient V sites as well as on V=O groups of the $V_2O_5$ surface. CO adsorbed on the V sites desorbed at 380 K while CO adsorbed on the V=O groups formed carbonate species with surface oxygen of $V_2O_5$ and desorbed as $CO_2$ resulting in the reduction of the surface of she $V_2O_5$catalyst. The amount of CO adsorbed in the form of carbonate species increased by both the pre- and post-adsorbed oxygen. The adsorptive behavior of methanol over the catalyst was studied by thermal desorption experiments of $CH_3OH$, HCHO, CO, and $H_2$ upon methanol adsorption at 298 K. The results showed that methanol was adsorbed dissociatively on the $V_2O_5$catalyst as methoxy and hydroxyl groups at 298K.

  • PDF

Preparation and Electrical Properties of Manganese-incorporated Neodymium Oxide System

  • Jong Sik Park;Keu Hong Kim;Chul Hyun Yo;Sung Han Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.713-718
    • /
    • 1994
  • Manganese-incorporated neodymium oxide systems with a variety of Mn mol% were prepared to investigate the effect of doping on the electrical properties of neodymium oxide. XRD, XPS, SEM, DSC, and TG techniques were used to analyze the specimens. The systems containing 2, 5, 8, and 10 mol% Mn were found to be solid solutions by X-ray diffraction analysis and the lattice parameters were obtained for the single-phase hexagonal structure by the Nelson-Riley method. The lattice parameters, a and c, decreased with increasing Mn mol%. Scanning electron photomicrographs of the specimens showed that the grain size decreased with increasing Mn mol%. The curves of log conductivity plotted as a function of 1/T in the temperature range from 500 to 1000$^{\circ}C$ at $PO_2$'s of $10^{-5}$ to $10^{-1}$ atm for the specimens were divided into high-and low-temperature regions with inflection points near 820-890$^{\circ}C$. The activation energies obtained from the slopes were 0.53-0.87 eV for low-temperature region and 1.40-1.91 eV for high-temperature region. The electrical conductivities increased with increasing Mn mol% and $PO_2$, indicating that all the specimens were p-type semiconductors. At $PO_2$'s below $10^{-3}$ atm, the electrical conductivity was affected by the chemisorption of oxygen molecule in the temperature range of 660 to 850$^{\circ}C$. It is suggested that electron holes generated by oxygen incorporation into the oxide are charge carriers for the electrical conduction in the high-temperature region and the system includes ionic conduction owing to the diffusion of oxygen atoms in the low-temperature region.

First-principles study of the initial-stage oxidation of Si(1110)-(7x7)

  • Lee, Sung-Hoon;Kang, Myung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.147-147
    • /
    • 2000
  • Chemisorption of oxygen molecules on the Si(111)-(7x7) surface has been studied extensively as a model for the initial-stage oxidation of the surface. The basic step to the surface oxidation is the dissociation of the adsorbed O2 molecules, but the dissociation procedure and the atomic structure of the reaction products still remains as a subject of debates. We present here density-functional theory calculations on the initial-stage oxidation states of the Si adatom site for all possible dissociation configurations that can be generated by multiple O2 reactions. We determine the equilibrium structures and analyze their electronic and vibrational properties in comparison with measured UPS, XPS, and EELS spectra. The O(ad) atom bonded on top of the Si adatom is always less stable than the O(ins) atom inserted into one of the adatom backbonds. Our electronic and vibrational analysis demonstrates further that the O(ad) and O(ins) atoms account well for the metastable and stable features in previous experiments, respectively. Moreover, the calculated decay pathways of the metastable structures and the comparison of the calculated O ls core-level shifts with XPS data provides a convincing argument in unambiguously identifying the experimental metastable and stable structures, thereby making it possible to build a correct atomic-scale picture of the initial-stage oxidation process on this surface.

  • PDF

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan-Ho;Kim, Sang-Hoon;Reddy, A.S.;Ha, H.;Park, Jeong-Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.245-245
    • /
    • 2012
  • Syntheses of oxide supported metal catalysts by wet-chemical routes have been well known for their use in heterogeneous catalysis. However, uniform deposition of metal nanoparticles with controlled size and shape on the support with high reproducibility is still a challenge for catalyst preparation. Among various synthesis methods, arc plasma deposition (APD) of metal nanoparticles or thin films on oxide supports has received great interest recently, due to its high reproducibility and large-scale production, and used for their application in catalysis. In this work, Au and Pt nanoparticles with size of 1-2 nm have been deposited on titania powder by APD. The size of metal nanoparticles was controlled by number of shots of metal deposition and APD conditions. These catalytic materials were characterized by x-ray diffraction (XRD), inductively coupled plasma (ICP-AES), CO-chemisorption and transmission electron microscopy (TEM). Catalytic activity of the materials was measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. We found that Au/$TiO_2$ is reactive, showing 100% conversion at $110^{\circ}C$, while Pt/$TiO_2$ shows 100% conversion at $200^{\circ}C$. High activity of metal nanoparticles suggests that APD can be used for large scale synthesis of active nanocatalysts. We will discuss the effect of the structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF