• Title/Summary/Keyword: Oxygen Uptake rate

Search Result 184, Processing Time 0.026 seconds

Feasibility of Composting Combinations of Sewage Sludge, Cattle Manure, and Sawdust in a Rotary Drum Reactor

  • Nayak, Ashish Kumar;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.47-57
    • /
    • 2014
  • The aim of this paper was to study the effect of five different waste combinations (C/N 15, C/N 20, C/N 25, C/N 30, and control) of sewage sludge coupled with sawdust and cattle manure in a pilot scale rotary drum reactor, during 20 days of the composting process. Our results showed that C/N 30 possesses a higher temperature regime with higher % reduction in moisture content, total organic carbon, soluble biochemical oxygen demand and chemical oxygen demand; and higher % gain in total nitrogen and phosphorus at the end of the composting period implying the total amount of biodegradable organic material is stabilized. In addition, $CO_2$ evolution and oxygen uptake rate decreased during the process, reflecting the stable behavior of the final compost. A Solvita maturity index of 8 indicated that the compost was stable and ready for usage as a soil conditioner. The results indicated that composting can be an alternate technology for the management of sewage sludge disposal.

Characteristics of the Oxygen Uptake Rate of Entomopathogenic Nematodes Steinernema spp. (곤충병원성 선충 Steinernema spp.의 산소 요구도 특성)

  • 김도완;박선호
    • Korean journal of applied entomology
    • /
    • v.38 no.2
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, entomopathogenic nematodes have received a considerable attention as biologicalcontrol agents. For in vitro cultivation, storage and transportation of nematodes, oxygen supply isextremely impotant due to its limited solubility and mass transfer problem. The oxygen uptake rates(OURs) of four different Steinernema species were measured in a 5L bioreactor at varying temperatures.The OURs of the Steinernema spp. were below 0.5 x mmolO'||'&'||' . min in the range of 13-17$^{\circ}$C. TheOURs (mmo102/L - min) of S. glaseri Dongrae and S. carpocapsae Pocheon strains were 0.4 x lo-', 0.75x lo-\ulcorner at 21$^{\circ}$C, 1.5 x lo-\ulcorner, 3.2 x 10-2 at 25"C, and 2.8 x lo-', 5.8 x lo-\ulcorner at 29"C, respectively. However,the OURs were not significantly altered by the agitation speed of 50-150 rpm. The specific oxygenuptake rates (qol) of S. glaseri NC, S. glaseri Dongrae, S. glaseri Mungyeong and S. carpocapsaePocheon strains were 0.3 x 0.5 x 0.3 x and 0.2 x mmolO~/cell min at 25"C,respectively. As the nematode size and temperature were increased, the qo, was also increased.the qo, was also increased.

  • PDF

Effects of Using Convergence Sports Massage on ssireum players' Recovery Heart Rate, Oxygen Uptake and Blood Lactate after Maximal Exercise (씨름선수의 최대운동 후 스포츠마시지 처치가 회복기 심박수, 산소섭취량 및 혈중젖산에 미치는 영향)

  • Jang, Hong-Young;Lee, Mihyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.317-324
    • /
    • 2019
  • The purpose of this study was to investigate the effects of sports massage in the recovery period after maximal exercise on heart rate(HR), oxygen uptake(OU), and blood lactate(BL) of ssireum players. The participants of this study were consisted of 24 ssireum players in university team(UT) and business team(BT). The first experiment had a rest recovery period for 20 minutes after the maximal exercise, and the second experiment gave a sports massage was performed the order of abdominal, waist and lower legs in a prone position for 20 minutes. The interaction effects of massage treatment and recovery period in HR showed a higher recovery ability in both the UT and BT when the massage treatment was given 10 minutes after recovery than when it was not given. The main effects of recovery period showed in all variables of HR, OU, and BL. The main effects of BL on massage treatment was significant low in both the UT and BT when the massage was given. And, the main effects of OU was significantly lower only in the BT. In conclusion, compared sports massage treatment on ssireum players after maximal exercise positively affected the recovery mechanism of HR, OU, and BL than the rest recovery method.

Optimization of Herbicidin A Production in Submerged Culture of Streptomyces scopuliridis M40

  • Ha, Sanghyun;Lee, Keon Jin;Lee, Sang Il;Gwak, Hyun Jung;Lee, Jong-Hee;Kim, Tae-Woon;Choi, Hak-Jong;Jang, Ja-Young;Choi, Jung-Sub;Kim, Chang-Jin;Kim, Jin-Cheol;Kim, Hyeong Hwan;Park, Hae Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.947-955
    • /
    • 2017
  • Herbicidin A is a potent herbicide against dicotyledonous plants as well as an antibiotic against phytopathogens. In this study, fermentation parameters for herbicidin A production in submerged culture of Streptomyces scopuliridis M40 were investigated. The herbicidin A concentration varied with the C/N ratio. High C/N ratios (>4) resulted in a herbicidin A production of more than 900 mg/l, whereas maximally 600 mg/l was obtained at ratios between 1 and 3.5. In 5-L batch fermentation, there was a positive correlation between the oxygen uptake rate (OUR) and herbicidin A production. Once the OUR increased, the substrate consumption rate increased, leading to an increase in volumetric productivity. Mechanical shear force affected the hyphal morphology and OUR. When the medium value of hyphal size ranged from 150 to $180{\mu}m$, high volumetric production of herbicidin A was obtained with OUR values >137mg $O_2/l{\cdot}h$. The highest herbicidin A concentration of 956.6 mg/l was obtained at 500 rpm, and coincided with the highest relative abundance of hyphae of $100-200{\mu}m$ length and the highest OUR during cultivation. Based on a constant impeller tip speed, which affects hyphal morphology, herbicidin A production was successfully scaled up from a 5-L jar to a 500-L pilot vessel.

Optimization of Biotransformation Process for Sodium Gluconate Production by Aspergillus niger (Aspergillus niger를 이용한 글루콘산 나트륨 생산 생변환 공정의 최적화)

  • 박부수;조병관;이상윤;임승환;김동일;김병기
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • In order to produce high concentration of sodium gluconate, optimization of the fermentation conditions, such as glucose concentration, inoculum size, dissolved oxygen concentration and glucose feeding method, was examined. When the glucose concentration was maintained in the range of 30∼50 g/L during the batch fermentation, glucose conversion yield and productivity were 92.2% and 6.0 g/L/hr, respectively. In the case of the low concentration below 30 g/L, the yield decreased by about 25%. As the inoculum size increased above 20%(w/v), lag phase was shortened but the productivity decreased. The dissolved oxygen level of 60∼70% was shown to be the threshold point for 75% of increase in the productivity of sodium gluconate. Finally, optimal glucose feeding rate was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and on the oxygen uptake rate and etc. Our result shows that glucose feeding, based on the oxygen uptake rate is a very simple, efficient and robust method, especially when oxygen is consumed as a substrate for the bioconversion. Using the above glucose feeding strategy under the optimized condition, 255 g/L of sodium gluconate concentration, 12 g/L/hr of productivity and 95% of glucose conversion yield were achieved with A. niger ACM53.

  • PDF

Recycling Water Treatment of Aquaculture by Using Trickling Filter Process (살수여상공법을 이용한 양어장 순환수처리)

  • KIM Jeong-Sook;LEE Byung-Hun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.230-237
    • /
    • 1996
  • The objective of the present study is to evaluate organic removal efficiencies, nitrogen removal efficiencies, kinetic constant, sludge production rates, oxygen requirements, and optimum treatment renditions for recycling water treatment of aquaculture by using a trickling filter process. When the loading rates were $0.500\~0.082kg\;COD/m^3/day$ and $0.271\~0.044kg\;NH_4^+-N/m^3/day$, SCOD and ammonia removal efficiencies were $74.5\~84.0\%$ and $43.7\~61.8\%$, respectively. The maximum removal rate of ammonia was 119.5 mg/L/day. Observed cell yield coefficient in the trickling filter reactor was 0.572 kg VSS/kg $BOD_{rem}$. When the hydraulic loading rate was $6.712\~40.341m^3/m^2/day$, oxygen uptake rate was $1.33\~7.22\;mg\;O_2/L/hr$.

  • PDF

Ginsenoside Rg1 Improves In vitro-produced Embryo Quality by Increasing Glucose Uptake in Porcine Blastocysts

  • Kim, Seung-Hun;Choi, Kwang-Hwan;Lee, Dong-Kyung;Oh, Jong-Nam;Hwang, Jae Yeon;Park, Chi-Hun;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1095-1101
    • /
    • 2016
  • Ginsenoside Rg1 is a natural compound with various efficacies and functions. It has beneficial effects on aging, diabetes, and immunity, as well as antioxidant and proliferative functions. However, its effect on porcine embryo development remains unknown. We investigated the effect of ginsenoside Rg1 on the in vitro development of preimplantation porcine embryos after parthenogenetic activation in high-oxygen conditions. Ginsenoside treatment did not affect cleavage or blastocyst formation rates, but did increase the total cell number and reduced the rate of apoptosis. In addition, it had no effect on the expression of four apoptosis-related genes (Bcl-2 homologous antagonist/killer, B-cell lymphoma-extra large, Caspase 3, and tumor protein p53) or two metabolism-related genes (mechanistic target of rapamycin, carnitine palmitoyltransferase 1B), but increased the expression of Glucose transporter 1 (GLUT1), indicating that it may increase glucose uptake. In summary, treatment with the appropriate concentration of ginsenoside Rg1 ($20{\mu}g/mL$) can increase glucose uptake, thereby improving the quality of embryos grown in high-oxygen conditions.

Effect of sulfur on the cadmium transfer and ROS-scavenging capacity of rice (Oryza sativa L.) seedlings

  • Jung, Ha-il;Chae, Mi-Jin;Kong, Myung-Suk;Kang, Seong-Soo;Kim, Yoo-Hak
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.187-187
    • /
    • 2017
  • Cadmium (Cd) pollution is rapidly increasing in worldwide due to industrialization and urbanization. In addition to its negative effects on the environment, Cd pollution adversely affects human health. Rice (Oryza sativa L.) is an important agricultural crop worldwide, including South Korea, and studies have examined its ability to alleviate Cd uptake from the soil into plants. However, information about the relationship between sulfur (S) and antioxidants in rice seedlings is still limited with regard to Cd phytotoxicity. We therefore investigated the changes in reactive oxygen species (ROS) and antioxidants in rice (Oryza sativa L. 'Dongjin') seedlings exposed to toxic Cd, S treatment, or both. The exposure of rice seedlings to $30{\mu}M$ Cd inhibited plant growth; increased the contents of superoxide, hydrogen peroxide, and malondialdehyde (MDA); and induced Cd uptake by the roots, stems, and leaves. Application of S to Cd-stressed seedlings decreased Cd-induced oxidative stress by increasing the capacity of the glutathione (GSH)-ascorbate (AsA) cycle, promoted S assimilation by increasing cysteine, GSH, and AsA contents in treated plants, and decreased Cd transfer from the roots to the stems and leaves. In conclusion, S application of plants under Cd stress promoted Cys and GSH biosynthesis and GSH-AsA cycle activity, thereby lowering the rate of Cd transfer to plant shoots and promoting the scavenging of the ROS that resulted from Cd toxicity, thus alleviating the overall Cd toxicity. Therefore, these results provide insights into the role of S in regulating the tolerance, uptake, and translocation of Cd in rice seedlings. The results of this study indicate that S application should have potential as a tool for mitigating Cd-stress in cereal crops, especially rice.

  • PDF

Effects of Energy Input and Air Flow Rate on Oxygen Transfer Rate at Different MLVSS in a Jet Loop Reactor (JLR) (MLVSS에 따른 Jet Loop Reactor (JLR)에서 동력량과 공기량이 산소전달률에 미치는 영향)

  • Yoon, Ae-Hwa;Bae, Jong-Hun;Lim, Hyun-Woo;Jun, Hang-Bae;Huh, Tae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.868-873
    • /
    • 2011
  • Oxygen transfer rate generally determines the performance of an aerobic wastewater treatment process that treats high strength wastewater such as food wastewater, animal wastewater and landfill leachate. In this paper, OUR and $K_L{\cdot}a$ were evaluated by using Jet Loop Reactor (JLR) according to the concentration of a mixed liquor volatile suspended solid (MLVSS), oxygen (air) flow rate and energy input as the variable of the operating conditions. Also, a nonlinear regression model was proposed by the statistical methods with the calculated $K_L{\cdot}a$. As a results, in case of applying the high strength wastewater which has to maintain high MLVSS, the energy input and the air flow rate are major parameters oxygen transfer rate in JLR. Finally, the final nonlinear regression model had been developed as a function of E/V, $Q_g$, and ${\mu}_c$.

Simplified Mathematical Approach for Optimum Design and Operation Parameters of the Full-Scale BNR Processes (생물학적 영양소 제거공정의 적정 설계 및 운전인자 도출을 위한 간단한 수학적 접근법)

  • Kim, Tae-Hoon;Ha, Jun-Soo;Park, Jae-Hong;Kim, Sung-Won;Choi, Euiso
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.448-457
    • /
    • 2005
  • The conventional activated sludge processes were operated as a combined organic substrate removal and nitrification. So, it was necessary to provide with oxygen for both carbon and ammonia removal. But, in the BNR processes, nitrification is separated from carbon removal that causes fast ammonia oxidation and reduced oxygen demands. And most of the substrate is utilized by denitrification organisms and phosphorus accumulating organisms. with these appearances, mathematical model for BNR processes different from IWA ASM can be simplified and applied. In this study, it was performed that the existing equations as McKinney model, nitrification model published by U.S. EPA and oxygen demands from stoichiometry and the relationship between NUR and OUR were applied to full-scale BNR processes and the results were compared with the measured. and it is possible to make out the optimum design parameter from those equations.