DOI QR코드

DOI QR Code

Effects of Energy Input and Air Flow Rate on Oxygen Transfer Rate at Different MLVSS in a Jet Loop Reactor (JLR)

MLVSS에 따른 Jet Loop Reactor (JLR)에서 동력량과 공기량이 산소전달률에 미치는 영향

  • Yoon, Ae-Hwa (KS Industry Co., Ltd.) ;
  • Bae, Jong-Hun (Department of Environmental Engineering, Chungbuk National University) ;
  • Lim, Hyun-Woo (Department of Environmental Engineering, Chungbuk National University) ;
  • Jun, Hang-Bae (Department of Environmental Engineering, Chungbuk National University) ;
  • Huh, Tae-Young (Department of Information Statistics, Chungbuk National University)
  • Received : 2010.10.27
  • Accepted : 2011.12.30
  • Published : 2011.12.30

Abstract

Oxygen transfer rate generally determines the performance of an aerobic wastewater treatment process that treats high strength wastewater such as food wastewater, animal wastewater and landfill leachate. In this paper, OUR and $K_L{\cdot}a$ were evaluated by using Jet Loop Reactor (JLR) according to the concentration of a mixed liquor volatile suspended solid (MLVSS), oxygen (air) flow rate and energy input as the variable of the operating conditions. Also, a nonlinear regression model was proposed by the statistical methods with the calculated $K_L{\cdot}a$. As a results, in case of applying the high strength wastewater which has to maintain high MLVSS, the energy input and the air flow rate are major parameters oxygen transfer rate in JLR. Finally, the final nonlinear regression model had been developed as a function of E/V, $Q_g$, and ${\mu}_c$.

산소전달률은 음폐수, 축산폐수 그리고 매립지 침출수와 같은 고농도 폐수처리를 호기성 공정으로 처리할 시 그 성과를 결정하는 아주 중요한 요소이다. 본 논문에서는, Jet Loop Reactor (JLR)를 이용하여 공기유량과 동력량을 운전조건의 변수로 두고 미생물의 농도에 따른 산소소비율(Oxygen uptake rate, OUR)과 물질전달계수(Volumetric mass transfer coefficient, $K_L{\cdot}a$)를 측정하였으며, 산출된 $K_L{\cdot}a$ 값의 결과를 가지고 통계학적인 분석을 통하여 비선형 회귀 모형을 제안하여 보았다. 연구 결과, 미생물 농도를 높게 유지시켜야 하는 고농도 폐수를 적용할 경우에는, 동력량과 공기량은 산소전달률의 중요한 인자이며, 마지막으로 최종 비선형 회귀모형을 동력량과, 공기량 그리고 점성계수의 함수로 나타내보았다.

Keywords

References

  1. Calik, P., Yilgör P., Ayhan, P. and Demir, A. S., "Oxygen transfer effects on recombinant benzaldehydelyase production," Chem. Eng. Sci., 59, 5075-5083(2004). https://doi.org/10.1016/j.ces.2004.07.070
  2. Garcia-Ochoa, F., Gomez, E. and Santos, V. E., "Oxygen transfer and upta-kerates during xanthan gum production," Enzyme Microb. Technol., 27, 680-690(2000). https://doi.org/10.1016/S0141-0229(00)00272-6
  3. Liu, Y. S., Wu, J. Y. and Ho, K. P., "Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures," Biochem. Eng. J., 27, 331-335(2006). https://doi.org/10.1016/j.bej.2005.08.031
  4. Roberts, P. V. and Dandllker, P. G., "Mass transfer of volatile organic contaminants from aqueous solution to the atmosphere during surface aeration," Environ. Sci. Technol. 17(8), 484-489(1983). https://doi.org/10.1021/es00114a009
  5. Zamouche, R. and Bencheikh-Lehocine, M., "Oxygen transfer and energy savings in a pilot-scale batch reactor for domestic wastewater treatment," Desalination, 206, 414-423(2007). https://doi.org/10.1016/j.desal.2006.03.576
  6. Hughmark, G. A., "Hold up and mass transfer in bubble columns," Ind. Eng. Chem. Proc. Des. Dev., 6, 218-220(1967).
  7. Garcia-Ochoa, F. and Gomez, E., "Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview," Biotechnol. Advances. 27. pp. 153-176(2009). https://doi.org/10.1016/j.biotechadv.2008.10.006
  8. Kawase, Y. and Hashiguchi, N., "Gas-liquid mass transfer in external-loop airlift columns with Newtonian and non-Newtonian fluids," Chem. Eng. J., 62, 35-42(1996).
  9. Chen, J. H., Hsu, Y. C., Chen, Y. F. and Lin, C. C., "Application of gas-inducing reactor to obtain high oxygen dissolution in aeration process," Water Res., 37, 2919-2928 (2003). https://doi.org/10.1016/S0043-1354(03)00084-8
  10. Farizoglu, B. and Keskinler, B., "Influence of draft tube crosssectional geometry on KLa and $\varepsilon$ ing jet loop bioreactors (JLB)," Chem. Eng. J., 133, 293-299(2007). https://doi.org/10.1016/j.cej.2007.02.022
  11. Calderbank, P. H., "Physical rate processes in industrial fermentation part l-the interfacial area in gas-liquid contacting with mechanical agitation," Trans. Instn. Them. Eng. Sci. J., 16, 443-453(1958).
  12. Panja, N. C. and Phaneswara, Rao, D., "Measurement of gasliquid parameters in a mechanically agitated contactor," Chem. Eng. J., 52, 121-129(1993). https://doi.org/10.1016/0300-9467(93)80061-R
  13. Pederson, A. G., Andersen, H., Nielsen, J. and Villadsen, J., "A novel technique based on Kr-85 for quantification of gasliquid mass transfer in bioreactor," Chem. Eng. J., 6, 803-810(1994).
  14. Ozabec, B. and Gayik, S., "The studies on the oxygen mass transfer co-efficient in a bioreactor," Proc. Biochem., 36, 729-741(2001). https://doi.org/10.1016/S0032-9592(00)00272-7
  15. Jin, B., Pinghe, Y. and Paul, L., "Hydrodynamics and mass transfer coefficient in three-phase air-lift reactors containing activated sludge," Chem. Eng. J., 45, 608-617(2006).
  16. 서종환, 이철승, "Jet Loop 반응기를 이용한 화학비료폐수 의 생물학적 질소제거 연구," 한국환경과학회지, 14(2), 157-165(2005).
  17. Petruccioli, M., Cardoso Duarte, J., Eusebio, A. and Federici, F., "Aerobic treatment of winery wastewater using a jetloop activated sludge reactor," Proc. Biochem., 37, 821-829 (2002). https://doi.org/10.1016/S0032-9592(01)00280-1
  18. Bloor, J. C., Anderson, G. K. and Willey, A. R., "High rate aerobic treatment of brewery wastewater using the jet loop reactor," Water Res., 29(5), 1217-1223(1995). https://doi.org/10.1016/0043-1354(94)00310-4

Cited by

  1. Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics vol.40, pp.4, 2016, https://doi.org/10.3795/KSME-B.2016.40.4.237