• Title/Summary/Keyword: Oxygen Flow Rate

Search Result 689, Processing Time 0.029 seconds

Mixed Flow Characteristics of Aeration Process for Recirculation Aquaculture System Using Ejector (이젝터를 이용한 순환양식 시스템 폭기공정의 혼합유동 특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.847-854
    • /
    • 2013
  • The objective of this study is to experimentally investigate the mixed flow and oxygen transfer characteristics of a horizontally injected aeration process using an annular nozzle ejector. The flow rate ratio, pressure ratio and ejector efficiency are calculated using the measured flow rate and pressure with the experimental parameters of the ejector pitch and primary flow rate. The visualization images of mixed flow issuing from the ejector are analyzed qualitatively, and the volumetric oxygen transfer coefficients are calculated using the measured dissolved oxygen concentration. The mixed flow behaves like a buoyancy jet or horizontal jet owing to the momentum of primary flow and air bubble size. The buoyancy force of the air bubble and the penetration of mixed flow are found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Combustion of PMMA in Liquid Oxygen Flow

  • Mitsutani, Toru;Ro, Takaaki;Yuasa, Saburo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.180-185
    • /
    • 2004
  • Our previous study showed that although the hybrid rocket engine with swirling gaseous oxygen had high performance, a direct injection of LOX with swirl into the combustion chamber of the hybrid rocket engine lowered the performance of the engine, compared to that with gaseous oxygen. In order to clarify this reason, combustion tests of a small PMMA combustor with an inner port diameter of 2 mm were conducted in liquid oxygen flow by comparison with gaseous oxygen flow. Although the oxygen mass fluxes of LOX were about two orders of magnitude larger than those of gaseous oxygen, the fuel regression rate of LOX were remarkably smaller than those of gaseous oxygen. For both liquid and gaseous oxygen, diffusion flames in the port of the grain controlled the combustion process of PMMA in oxygen flow. These results may be explained by the fact that only small amount of LOX vaporized and consumed in the combustion with PMMA while flowing through the port due to relatively larger latent heat of injected liquid oxygen compared to the heat of release by combustion which depended on the burning surface area of PMMA.

  • PDF

Experimental Study for Oxygen Methane MILD Combustion in a Laboratory Scale Furnace (Laboratory Scale 연소로를 적용한 산소 메탄 MILD 연소에 대한 실험적 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.6-15
    • /
    • 2016
  • The oxygen fuel MILD (Moderate or Intense Low-oxygen Dilution) combustion has been considered as one of the promising combustion technology for flame stability, high thermal efficiency, low emissions and improved productivity. In this paper, the effect of oxygen and fuel injection condition on formation of MILD combustion was analyzed using lab scale oxygen fuel MILD combustion furnace. The results show that the flame mode was changed from a diffusion flame mode to a split flame mode via a MILD combustion flame mode with increasing the oxygen flow rate. A high degree of temperature uniformity was achieved using optimized combination of fuel and oxygen injection configuration without the need for external oxygen preheating. In particular, the MILD combustion flame was found to be very stable and constant flame temperature region at 7 KW heating rate and oxygen flow rate 75-80 l/min.

Simulation of Inductively Coupled $Ar/O_2$ Plasma; Effects of Operating Conditions on Plasma Properties and Uniformity of Atomic Oxygen

  • Park, Seung-Kyu;Kim, Jin-Bae;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.59-63
    • /
    • 2009
  • This paper presents two dimensional simulation results of an inductively coupled $Ar/O_2$ plasma reactor. The effects of operating conditions on the plasma properties and the uniformity of atomic oxygen near the wafer were systematically investigated. The plasma density had the linear dependence on the chamber pressure, the flow rate of the feed gas and the power deposited into the plasma. On the other hand, the electron temperature decreased almost linearly with the chamber pressure and the flow rate of the feed gas. The power deposited into the plasma nearly unaffected the electron temperature. The simulation results showed that the uniformity of atomic oxygen near the wafer could be improved by lowering the chamber pressure and/or the flow rate of the feed gas. However, the power deposited into the plasma had an adverse effect on the uniformity.

  • PDF

Coating System for High Quality Ferromagnetic Thin Films (고품위 자성체 박막 코팅 시스템)

  • Kim, Gi-Bum;Hwang, Yoon-Sik;Kim, Yeong-Shik;Park, Jang-Sick;Park, Jae-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.231-232
    • /
    • 2007
  • Nickel oxide thin films were deposited by the DC magnetron reactive sputtering process under the conditions such as various oxygen flow rates(0, 3, 6, 8, 10 sccm) with constant 33 sccm argon flow rate for the sputtering time of 40 second with the power of 0.3 kW. Sheet resistances were measured by the four point probes. In order to observe discharge voltage characteristics according to the oxygen flow rates, the sputtering processes were performed under the powers of 0.2kW and 0.3kW. The feasibility of the coating system for high quality ferromagnetic thin films was tested through the electromagnetic simulation and the thin film thickness measurement from the experiment. It was shown that a discharge voltage was decreased under the low power and low oxygen flow rate, since the oxygen was quickly saturated on nickel target surface. The sheet resistance was increased as oxygen flow rate increased. The film thickness deposited by the coating system for ferromagnetic target was improved approximately 10% in comparison with previous coating systems.

  • PDF

Flow Measurement of Liquid Oxygen using the Multi-hole Orifice (다공 오리피스를 이용한 액체산소 유량측정)

  • Lim, Hayoung;Lee, Jisung;Kim, Junghan;Noh, Yongoh
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1031-1035
    • /
    • 2017
  • To measure the flow rate of the liquid oxygen, two types of multi-hole orifice meter were prepared. The $C_d$ of the orifice meter was determined by the flow test using water. After performing the liquid oxygen flow test for orifice meter and Coriolis meter, the mass flow rate was calculated using the $C_d$. The error of the mass flow rate compare to Coriolis meter, A-type(1/2") was below than 0.4%, B-type(3/4") was below than 0.8%.

  • PDF

Preparation of ATO Thin Films by DC Magnetron Sputtering (I) Deposition Characteristics (DC Magnetron Sputtering에 의한 ATO 박막의 제조 (I)증착특성)

  • Yoon, C.;Lee, H.Y.;Chung, Y.J.
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.441-447
    • /
    • 1996
  • Sb doped SnO2(ATO:Antinomy doped Tin Oxide) thin films were prepared by a DC magnetron spttuering method using oxide target and the deposition characteristics were investigated. The experimental conditions are as follows :Ar flow rate : 100 sccm oxygen flow rates ; 0-100 sccm deposition temperature ; 250 -40$0^{\circ}C$ DC sputter powder ; 150~550 W and sputtering pressure ; ; 2~7 mTorr. Deposition rate greatly depends not on the deposition temperature but on the reaction pressure oxygen flow rate and sputter power,. when the sputter powder is low ATO thin films with (110) preferred orientation are deposited. And when the sputter power is high (110) prefered orientation appeares with decreasing of oxygen flow rate and increasing of suputte-ring pressure.

  • PDF

Effects of reactant gases on phosphoric acid fuel cell performance (인산형 연료전지의 발전성능에 미치는 반응기체 영향)

  • 송락현;김창수;신동렬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.374-379
    • /
    • 1996
  • Effects of reactant gas flow rates and starvation on phosphoric acid fuel cell performance were studied. As the reactant gas flow rates increased, the cell performance increased and then the cell maintained constant performance. The optimum flow rates of hydrogen, oxygen and air under galvanostatic condition of 150 mA/cm$_{2}$ are found to be 5cc/min cm$_{2}$ 5cc/min cm$_{2}$ and 15cc/min cm$_{2}$ at room temperature and 1 atm, respectively. Also the open circuit voltage of single cell decreased with increasing oxygen flow rate due probably to the decreased probably to the decreased oxygen pressure in the cathode side. Hydrogen and oxygen starvation resulted in voltage loss of about 5mV and 0-2mV, respectively. The voltage loss was independent of starvation time. These results were discussed from point of view of electrochemical reaction of the cell. (author). 9 refs., 8 figs.

  • PDF

The Effect of the Oxygen Flow Rate on the Electronic Properties and the Local Structure of Amorphous Tantalum Oxide Thin Films

  • Denny, Yus Rama;Lee, Sunyoung;Lee, Kangil;Kang, Hee Jae;Yang, Dong-Seok;Heo, Sung;Chung, Jae Gwan;Lee, Jae Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.398-398
    • /
    • 2013
  • The electronic properties and the local structure of tantalum oxide thin film with variation of oxygen flow rate ranging from 9.5 to 16 sccm (standard cubic centimeters per minute) have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results show that the Ta4f spectrum for all films consist of the strong spin-orbit doublet $Ta4f_{7/2}$ and $Ta4f_{5/2}$ with splitting of 1.9 eV. The oxygen flow rate of the film results in the appearance of new features in the Ta4f at binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV, these peaks attribute to $Ta^{1+}$, $Ta^{2+}$, $Ta^{4+}$/$Ta^{2+}$, and $Ta^{5+}$, respectively. Thus, the presence of non-stoichiometric state from tantalum oxide ($TaO_x$) thin films could be generated by the oxygen vacancies. The REELS spectra suggest the decrease of band gap for tantalum oxide thin films with increasing the oxygen flow rate. The absorption coefficient ${\mu}$ and its fine structure were extracted from the fluorescence mode of extended X-ray absorption fine structure (EXAFS) spectra. In addition, bond distances (r), coordination numbers (N) and Debye-Waller factors (${\sigma}^2$) each film were determined by a detailed of EXAFS data analysis. EXAFS spectrapresent both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the increase of oxygen flow rate.

  • PDF

Fabrication and Properties of Diamond Thin-Film from N-Hexane by Using Microwave Plasma Process (Microwave Plasma Process에 의한 N-Hexane으로부터 다이아몬드 박막제작 및 특성)

  • Han, Sang-Bo;Kwon, Tae-Jin;Park, Sang-Hyun;Park, Jae-Youn;Lee, Seung-Ji
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.79-87
    • /
    • 2011
  • In this paper, the best conditions for the deposition of the high quality diamond thin-film from N-hexane as a carbon source in the microwave plasma process was carried out. Major parameters are the deposition time, flow rates of oxygen and hexane. The deposition time for the steady state thin-film was required more than 4[h], and the suitable flow rates of hexane and oxygen for the high-quality thin-film are 0.4[sccm] and 0.1~0.2[sccm], respectively. In addition, amorphous carbons such as DLC and graphite were grown by increasing the flow rate of hexane, and it decreased by increasing the flow rate of oxygen. Specifically, the growth rate is about 1.5[${\mu}mh-1$] under no addition of oxygen and it decreased about 60[%] as ca. 1.0[${\mu}mh-1$] with oxygen.