• Title/Summary/Keyword: Oxyfluorination

Search Result 20, Processing Time 0.022 seconds

Adsorption Characteristics of Chromium Ion at Low Concentration Using Oxyfluorinated Activated Carbon Fibers (함산소불화 활성탄소섬유를 이용한 저농도 크롬이온의 흡착 특성)

  • Kim, Min-Ji;Jung, Min-Jung;Choi, Suk Soon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.432-438
    • /
    • 2015
  • In this work, activated carbon fibers (ACFs) were oxyfluorinated and their adsorption ability for the low concentration of hexavalent chromium in an aqueous solution was investigated. The pore structure and surface properties of ACFs were examined by BET and X-ray Photoelectron Spectroscopy (XPS), respectively. Due to the oxyfluorination treatment, the content of (C-O) bond on ACFs surface which influences the adsorption capacity for heavy metal ions increased largely, resulting that $Cr^{6+}$ adsorption equilibrium reached quickly within 10 min. In addition, the maximum removal efficiency at the initial $Cr^{6+}$ concentration of 20 ppm was observed, which is a 100% improvement compared to that of non-treated ACFs. These results suggest that the oxyfluorination of ACFs can be applied as a good surface treatment for the effective adsorption of the low concentration of $Cr^{6+}$.

Effect of Oxyfluorination of Activated Carbon Fibers on Adsorption of Benzene Gas Causing Sick House Syndrome (새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향)

  • Lim, Hyung Soon;Kim, Min-Ji;Kong, Eun Young;Jeong, Jin-do;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.312-317
    • /
    • 2018
  • In this study, activated carbon fibers (ACFs) were treated by oxy-fluorination to improve the adsorption property of benzene gas, one of the gases causing sick house syndrome. Surface properties and pore characteristics of oxyfluorinated activated carbon fibers were confirmed by X-ray photoelectron Spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and adsorption properties of benzene gas were evaluated by gas chromatography (GC). As a result of XPS data, it was confirmed that the fluorine functional groups on activated carbon fibers surface increased with increasing the fluorine partial pressure. The specific surface area of all samples decreased after the oxyfluorination treatment, but the micropore volume ratio increased when the fluorine partial pressure was at 0.1 bar. The oxyfluorinated activated carbon fibers adsorbed 100 ppm benzene gas for an 11 h, it was found that the adsorption efficiency of benzene gas was improved about twice as much as that of untreated ones.

Studies on the Fouling Reduction through Oxyfluorination of Porous Polyethylene Membranes (함산소불소화법을 통한 다공성 폴리에틸렌막의 파울링현상 감소연구)

  • Kang, Su Yeon;Rhim, Ji Won;Cheong, Seong Ihl
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.431-437
    • /
    • 2014
  • To overcome the flux reduction due to the fouling by adsorption of foulants onto the porous hydrophobic polyethylene membrane surface, the oxyflorination was introduced to hydrophilize the hydrophobic membranes. After the hydrophilization through oxyfluorination, the contact angle decreased from $93^{\circ}$ to $50^{\circ}$ while the water flux increased to 60%. It was considered that for the model foulants dissolved in water, such as albumin (form bovine serum, BSA), humic acid sodium salt (HA), and alginic acid sodium salt (SA), the flux was enhanced since the adsorbed foulants decreased by the oxyfluorination. Particularly, it was obtained that the water flux was over twice more than the untreated polyethylene membrane in case of SA foulant.

Effects of Oxyfluorinated Graphene Oxide Flake on Mechanical Properties of PMMA Artificial Marbles (함산소불소화 처리된 그래핀 산화물 플레이크가 PMMA 인조대리석의 기계적 물성에 미치는 영향)

  • Kim, Hyo-Chul;Jeon, Son-Yeo;Kim, Hyung-Il;Lee, Young-Seak;Hong, Min-Hyuk;Choi, Ki-Seop
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.251-261
    • /
    • 2012
  • The nanocomposites containing graphene oxide flakes were prepared in order to improve the mechanical properties of artificial marbles based on poly(methyl methacrylate)(PMMA) matrix. Graphene oxide flakes were prepared from graphite by oxidation with Hummers method followed by exfoliation with thermal treatment. Surface of graphene oxide flakes were modified with oxyfluorination in various oxygene:fluorine compositions to improve the interfacial compatibility. The nanocomposites containing graphenes modified with oxyfluorination in the oxygen content of 50% and higher showed the significant increase in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fractured surface showed the improved interfacial adhesion between PMMA matrix and the graphenes which were properly treated with oxyfluorination. The mechanical properties of nanocomposite were deteriorated by increasing the content of graphene above 0.07 phr due to the nonuniform dispersion of graphenes.

Effects of Oxyfluorination on Surface Graft Polymerization of Low Density Polyethylene Film and Its Surface Characteristics (함산소불소화가 저밀도 폴리에틸렌 표면의 그라프트 중합 및 그 표면 특성에 미치는 영향)

  • Yun, Seok-Min;Woo, Sang-Wook;Jeong, Eui-Gyung;Bai, Byong-Chol;Park, In-Jun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.343-348
    • /
    • 2010
  • The surface of low density polyethylene (LDPE) film was oxyfluorinated under different reaction conditions to introduce hydroperoxide groups and change surface characteristics. Hydroperoxide functional groups created by oxyfluorination were used as active sites for graft polymerization with hydrophobic monomer, acryl amide (AM), and hydrophilic monomer, methyl methacrylate (MMA) to carry out the second modification of the LDPE film surface. The surface properties of the OFPE films and grafted OFPE films were characterized by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, ATR-IR, contact angle measurement and DSC. From the results of DPPH method, the amount of hydroperoxide groups on the oxyfluorinated LDPE film continuously increased as the total pressure in the oxyfluorination and the partial pressure of fluorine gas increased. The water contact angle and surface free energy measurements showed that hydrophilic liquid (water) contact angle on LDPE film surface decreased with hydrophilic AM grafting and hydrophobic liquid (methylene diiodide) contact angle on LDPE film surface decreased with hydrophobic MMA grafting. These were attributed to AM or MMA monomer grafting and the wettability of LDPE filmsurface to hydrophilic and hydrophobic liquids were improved.

An Oxyfluorination Effect of Carbon Nanotubes Supports on Electrochemical Behaviors of Platinum Nanoparticle Electrodes (백금 나노입자전극의 전기화학적 거동에 대한 카본나노튜브 지지체의 산소-불소 처리효과)

  • Kim, Seok;Lee, Jae-Rock;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • In the present study, the effect of oxyfluorination treatment on multi-walled nanotubes (MWNTs) supports was investigated by analyzing surface functional groups. The surface characteristics were determined by Fourier transformed-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). After the deposition of platinum nanoparticles on the above treated carbon supports, a crystalline size and a loading level had been investigated. Electrochemical properties of the treated MWNTs-supported Pt (Pt/MWNTs) catalysts were analyzed by current-voltage curve measurements. From the results of surface analysis, an oxygen and fluorine-containing functional group had been introduced to the surface of carbon supports. The oxygen and fluorine contents were the highest value at the treatment of 100 temperature. The Pt/100-MWNTs showed the smallest particle crystalline size of 3.5 nm and the highest loading level of 9.4% at the treatment of 100 temperature. However, the sample treated at the higher temperature showed the larger crystalline size and the lower loading level. This indicated that the crystalline size and the loading level could be controlled by changing the temperature of oxyfluorination treatment. Accordingly, an electrochemical activity was enhanced by increasing the temperature of treatment upto 100, and then decreased in the case of 200 and 300. The highest specific current density of 120 mA/mg had been obtained in the case of Pt/100-MWNTs.

Effect of Oxyfluorination on Electroless Ni Deposition of Carbon Nanotubes (CNTs) and Their EMI Shielding Properties (탄소나노튜브의 무전해 니켈도금 및 전자파 차폐 특성에 미치는 함산소불소화의 영향)

  • Choi, Ye Ji;Lee, Kyeong Min;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.212-218
    • /
    • 2019
  • To investigate the effect of the oxyfluorination of carbon nanotubes (OF-CNTs) on electroless Ni deposition and electromagnetic interference shielding efficiency (EMI SE), CNTs were treated with a mixture of oxygen and fluorine gases and sequentially deposited with nickel. These samples were then manufactured into thin films on a polyimide film to evaluate their EMI SE. The surface chemical property of OF-CNTs was investigated by X-ray photoelectron spectroscopy. From the results of thermogravimetric and scanning electron microscopic analyses, it was found that both the amount of deposited Ni and the surface morphology changed depending on oxyfluorination. Moreover, the Ni-deposited CNTs pretreated with $O_2:F_2=1:9vol%$ exhibited the maximum EMI SE as approximately 19.4 dB at 1 GHz. These results were attributed to the formation of oxygen and fluorine functional groups on the surface of CNTs due to the oxyfluorination, and the functional groups enabled to deposit a suitable amount of Ni and improve the dispersion in the deposited solution.

Effects of maleic anhydride content on mechanical properties of carbon fibers-reinforced maleic anhydride-grafted-poly-propylene matrix composites

  • Kim, Hyun-Il;Han, Woong;Choi, Woong-Ki;Park, Soo-Jin;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.20
    • /
    • pp.39-46
    • /
    • 2016
  • In this work, the effects of maleic anhydride (MA) content on mechanical properties of chopped carbon fibers (CFs)-reinforced MA-grafted-polypropylene (MAPP) matrix composites. A direct oxyfluorination on CF surfaces was applied to increase the interfacial strength between the CFs and MAPP matrix. The mechanical properties of the CFs/MAPP composites are likely to be different in terms of MA content. Surface characteristics were observed by scanning electron microscope, Fourier transform infrared spectroscopy, and single fiber contact angle method. The mechanical properties of the composites were also measured by a critical stress intensity factor (KIC). From the KIC test results, the KIC values were increased to a maximum value of 3.4 MPa with the 0.1 % of MA in the PP, and then decreased with higher MA content.

Enhancement of Nitrate Removal Ability in Aqueous Phase Using Ulmus davidiana Bark for Preventing Eutrophication (부영양화 방지를 위하여 느릅나무 수피를 활용한 수중에서 질산성질소의 제거능 향상)

  • Choi, Suk Soon;Choi, Jung Hoon;Kim, Min-Ji;Lee, Young-Seak;Ha, Jeong Hyub;Cha, Hyung Joon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.604-608
    • /
    • 2015
  • In the present work, the improvement of nitrate removal ability was investigated to resolve a eutrophication problem by using Ulmus davidiana (U. davidiana) bark generated from Gangwon province. When the initial pH of aqueous solution was adjusted to 3.5 in batch experiments, the removal efficiencies for 10 and 20 mg/L nitrate increased up to 43 and 37%, respectively. In addition, when U. davidiana bark of 1.0 g/100 mL was used for 8 h, the removal efficiency for 20 mg/L nitrate was 68%. Moreover, when reforming reaction of U. davidiana bark was performed under oxyfluorination conditions, the optimal ratio of partial pressure between fluorine and oxygen was 1 : 9 for an enhanced nitrate adsorption amount. When reformed U. davidiana bark was used for 8 h operation under the optimal oxyfluorination condition, removal efficiencies for 10, 20 and 40 mg/L nitrate were found to be 96, 95 and 59%, respectively. Collectively, these results suggest that our water treatment technology can be effectively utilized to treat high concentrations of nitrate in water bodies.

Effect of graphite oxide on photodegradation behavior of poly(vinyl alcohol)/graphite oxide composite hydrogels

  • Moon, Young-E;Yun, Ju-Mi;Kim, Hyung-Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.138-142
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA) composites with various graphite oxide (GO) contents (0 to 10 wt%) were prepared by sonicating the mixture of PVA and GO, followed by crosslinking with glutaraldehyde. GO was pre-treated with oxyfluorination ($O_2:F_2$ = 8:2) in order to modify the surface of GO to allow it to carry hydrophilic functional groups. PVA/GO composite hydrogels were characterized by scanning electron microscopy and Fourier-transform infrared spectrometer (FT-IR). The morphology of the PVA/GO composite hydrogels and the variations in soluble gel portion were investigated under various GO contents and UV irradiation doses. The variation in the chemical structure of photo degraded PVA/GO composite hydrogels was studied by FT-IR. The photochemical stability of PVA/GO composite hydrogels under UV irradiation was found to improve noticeably with increasing content of uniformly dispersed GO.