• Title/Summary/Keyword: Oxidized mercury

Search Result 19, Processing Time 0.03 seconds

Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS (수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.269-276
    • /
    • 2014
  • This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury ($Hg^{2+}$) to elemental mercury ($Hg^0$) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of $Hg^{2+}$ into $Hg^0$. These transition metal catalysts revealed high activity for reduction of $Hg^{2+}$ into $Hg^0$ in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced $Hg^{2+}$ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between $H_2$ and $O_2$ causing the consumption of $O_2$ at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for $Hg^{2+}$ reduction to $Hg^0$, which was compatible to that of wet-chemistry technology using $SnCl_2$ solution, the catalytic reduction system of Fe catalyst with the supply of $H_2$ could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.

Reaction Characteristics of Elemental and Oxidized Mercury with Fly Ash Components (비산재 성분과 원소 및 산화수은의 반응특성)

  • Lee, Sang-Sup;Kim, Kwang-Yul;Oh, Kwang-Joong;Jeon, Jun-Min;Kang, Dong-Chang
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.453-458
    • /
    • 2013
  • Fly ash has capacity to oxidize or adsorb mercury in a flue gas. Mercury oxidation and adsorption efficiencies of fly ash vary depending on the properties of fly ash. This study was designed to understand reaction characteristics of mercury with fly ash components. The fly ash components were tested to determine their oxidation and adsorption capabilities for elemental mercury and oxidized mercury. A sample was synthesized with fly ash components and tested. The test results were compared with those of the fly ash sample obtained from a coal-fired power plant. $Fe_2O_3$, CuO and carbon black showed higher oxidation or adsorption efficiency for elemental mercury while CaO, MgO, CuO and carbon black showed higher adsorption efficiency for mercury chloride. In addition, the synthesized sample showed comparable mercury oxidation and adsorption efficiencies to the fly ash sample.

Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant (석탄화력발전시설에서의 하이브리드 집진기 적용 시 수은화합물 제어성능 평가)

  • Sung, Jin-Ho;Jang, Ha-Na;Back, Seung-Ki;Jung, Bup-Muk;Seo, Yong-Chil;Kang, Yeon-Suk;Lee, Chul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • This study focused on the performance of the newly developed hybrid filter system to capture fine particulate matter and mercury compounds in a coal-fired power plant. The hybrid filter system combining bag-filter and electrostatic precipitator had been developed to remove fine particulate matter. However, it would have a good performance to control mercury compounds as well. In Hybrid filter capture system, the total removal efficiency of total mercury compounds consisting of particulate mercury ($Hg_p$), oxidized mercury ($Hg^{2+}$), and elemental mercury ($Hg^0$) was 66.2%. The speciation of mercury compounds at inlet and outlet of Hybrid filter capture system were 1.3% and 0% of $Hg_p$, 85.2% and 68.1% of $Hg^0$, and 13.5% and 31.9% of $Hg^{2+}$, respectively. In hybrid filter capture system injected with 100% of flue-gas, the removal efficiency of total mercury was calculated to increase to 93.5%.

Protection of Mercury induced Acute Respiratory Injury by Inhaled Oxidizing Agent (수은에 의한 급성호흡손상시 산화물질의 억제효과)

  • 황태호
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.259-265
    • /
    • 2001
  • Mercury vapor inhalation-induced acute respiratory failure(ARF) has been reported to be fatal. This study was designed to observe the possible mechanism of inhaled mercury vapor poisoning in the respiratory system. Sixty percent of rats(12/20) exposed to mercury vapor were dead within 72 hours of exposure whereas all the rats(20/20) exposed to mercury vapor combined with dithiothreitol(DTT) vapor survived. The histological observation showed that ARF was a direct cause of the death induced by mercury vapor inhalation, which was significantly circumvented by DTT vapor. Cyclic AMP mediated chloride secretion was inhibited by luminal side but not serosal side sulfhydryl blocking agents (Hf$^{2+}$ $\rho$-chloromercuribenzoic acid or $\rho$-chloromercuriphenyl sulfonic acid) in a dose-dependent manner in a primary cultured rat airway monolayer. The inhibitory component of cAMP induced chloride secretion was completely restored by luminal side DTT(0.5mM). these results suggest that the oxidized form(Hg$^{2+}$) of mercury vapor(Hg0) contribute to ARF and subsequent death. The finding is important as it can provide important information regarding emergency manipulation of ARF patients suffering from by mercury vapor poisoning.ing.

  • PDF

Simultaneous Removal of Mercury and NO by Metal Chloride-loaded V2O5-WO3/TiO2-based SCR catalysts (금속염화물이 담지된 V2O5-WO3/TiO2 계 SCR 촉매에 의한 수은 및 NO 동시 제거)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.172-180
    • /
    • 2017
  • Thermodynamic evaluation indicates that nearly 100% conversion of elemental mercury to oxidized mercury can be attained by HCl of several tens of ppm level at the temperature window of SCR reaction. Cu-, Fe-, Mn-chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts revealed good NO removal activity at the operating temperature window of SCR process. The catalysts with high desorption temperature indicating adsorption strength of $NH_3$ revealed higher NO removal activity. The HCl fed to the reaction gases promoted the oxidation of mercury. However, the activity for the oxidation of elemental mercury to oxidized mercury by HCl was suppressed by $NH_3$ inhibiting the adsorption of HCl to catalyst surface under SCR reaction condition containing $NH_3$ for NO removal. Metal chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts showed much higher activity for mercury oxidation than $V_2O_5-WO_3/TiO_2$ catalyst without metal chloride under SCR reaction condition. This is primarily attributed to the participation of chloride in metal chloride on the catalyst surface promoting the oxidation of elemental mercury.

Biocompatibility of oxidized alginate/gelatin/BCP -based hydrogel composites

  • Phuong, Nguyen Thi;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Teak
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.40.2-40.2
    • /
    • 2010
  • In this study, oxidized alginate/gelatin/biphase calcium phosphate (BCP)- based hydrogel composites were fabricated. Alginate sodium was oxidized by periodate. The oxidized product was confirmed by using $^1H$ and $^{13}C$ NMR spectra. The number average molecular weight ($M_n$), the average molecular weight ($M_w$) of the oxidized alginate were determined by Gel Permeation Chromatography (GPC). The hydrogel was formed from the oxidized alginate and gelatin solution via Schift-base reaction. The hydrogel showed a highly porosity by a Scanning Electron Microscope (SEM) and Mercury Intrusion Porosimetry (MIP). Crosslinked density of the gel matrix were assessd by trinitrobenzene sulfonic acid (TNBS) assay that shows a high effect on swelling ratio. Increment of the crosslinked desity resulted in enhancing compressive strength of the hydrogel composite. The cytotoxity of hydrogel was assessed with osteoblast MG-63. The hydrogel composites show a high compatibility. The obtained results showed a potential application for bone regeneration in future.

  • PDF

Activity of $V_2O_5-WO_3/TiO_2$-based SCR Catalyst for the Oxidation of Gas-phase Elemental Mercury ($V_2O_5-WO_3/TiO_2$ 계 SCR 촉매의 가스상 원소수은 산화 활성)

  • Hong, Hyun-Jo;Ham, Sung-Won
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.370-378
    • /
    • 2011
  • Catalytic activity of $V_2O_5-WO_3/TiO_2$-based SCR catalyst was examined for the oxidation of gas-phase elemental mercury to oxidized mercury. Mercury species was not detected on the commercial SCR catalyst after the oxidation reaction of elemental mercury, regadless of the presence of HCl acting as oxidant and the reaction conditions. This suggests that elemental mercury oxidation by HCl could occur via a Eley-Rideal mechanism with gas phase or weakly-bound mercury on the surface of $V_2O_5-WO_3/TiO_2$ SCR catalyst. The activity for mercury oxidation was significantly increased with the increase of $V_2O_5$ loading, which indicates that $V_2O_5$ is the active site. However, turnover frequency for mercury oxidation was decreased with the increase of $V_2O_5$ loading, indicating the activity for mercury oxidation was strongly dependent on the surface structure of vanadia species. The activity for oxidation of elemental mercury under SCR condition was much less than that under oxidation condition at the same HCl concentration and reaction temperature.

Voltammetric Studies of Cu-Adriblastina Complex and its Effect on ssDNA-Adriblastina Interaction at In Situ Mercury Film Electrode

  • D.Abd El Hady;M.Ibrahim Abdel Hamid;M.Mahmoud Sellem;N.Abo E Maali
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1161-1167
    • /
    • 2004
  • Adriblastina, a cancerostatic anthracycline antibiotic, causes considerable oxidative damage to DNA molecules. The interaction of this compound with DNA was investigated using Osteryoung square wave stripping voltammetry (OSWSV) and cyclic voltammetry (CV) at an in situ mercury film electrode. It was found that the equilibrium constant of the bonded oxidized form of the drug was 63 times bigger more important than that of the bonded reduced form. Copper forms 1 metal: 2 drug stoichiometry complex which is highly stable compared to ssDNA-drug interaction and consequently inhibited the drug biochemical damaging effects. Copper complex offered sub-nanogram determination of adriblastina in aqueous and urine media.

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.

Study on Electrode Selection for Electrochemical Detection of Cadmium and Lead (카드뮴과 납 전기화학적 검출을 위한 전극선정에 관한 연구)

  • Kim, Hak-Jin;Kim, Ki-Young;Moh, Chang-Yeon;Cho, Han-Keun
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.404-409
    • /
    • 2008
  • Excessive presence of heavy metals in environment affects plants and fruits grown in the contaminated area. Rapid on-site monitoring of heavy metals can provide useful information for efficiently characterizing heavy metal-contaminated sites and for minimizing the exposure of the contaminated food crops to humans. This study reports on the evaluation of gold and glassy carbon (GC) electrodes with mercury or bismuth as a coating material for simultaneous determination of cadmium (Cd) and lead (Pb) in 0.1 M $HNO_3$ solution by anodic stripping voltammetry (ASV). The use of a square-wave voltammetric potential between a working electrode and a reference electrode caused Cd and Pb ions deposited on the electrode surface to be oxidized, thereby generating electric currents at different potentials. The mercury-coated gold electrode was not sensitive enough to detect the usable range of Cd concentrations (1 to 100 ppb). The GC electrodes with mercury or bismuth displayed well-defined, sharp and separate current peaks for Cd and Pb ions when the square-wave voltammetric potentials were applied. The peak currents measured with both mercury- and bismuth- coated GC electrodes were linearly proportional to Cd and Pb concentrations in the range of 1 to 200 ppb in 0.1 M $HNO_3$ with strong linear relationships between concentration and peak current ($R^2$ > 0.95), indicating that both of Cd and Pb ions could be quantitatively measured.