• 제목/요약/키워드: Oxide scale growth

검색결과 51건 처리시간 0.028초

On-Site Corrosion Behavior of Water-Treated Boiler Tube Steel

  • Seo, Junghwa;Choi, Mihwa;He, Yinsheng;Yang, Seok-Ran;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • 제45권3호
    • /
    • pp.177-182
    • /
    • 2015
  • The boiler tubes of X20CrMoV12.1 used in fossil-fired power plants were obtained and analyzed for the effect of water treatment on the steam corrosion-induced oxide scale in an effort to better understand the oxide formation mechanism, as well as pertinent method of maintenance and lifetime extension. The specimens were analyzed using various microscopy and microanalysis techniques, with focuses on the effect of water treatment on the characters of scale. X-ray diffraction analysis showed that the scales of specimens were composed of hematite ($Fe_2O_3$), magnetite ($Fe_3O_4$), and chromite ($FeCr_2O_4$). Electron backscatter diffraction analysis showed that the oxides were present in the following order on the matrix: outer $Fe_2O_3$, intermediate $Fe_3O_4$, and inner $FeCr_2O_4$. After all volatile treatment or oxygenated treatment, a dense protective $Fe_2O_3$ layer was formed on the $Fe_3O_4$ layer of the specimen, retarding further progression of corrosion.

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

Evaluation of STS 430 and STS 444 for SOFC Interconnect Applications

  • Kim, S.H.;Huh, J.Y.;Jun, J.H.;Kim, D.H.;Jun, J.H.
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.1-6
    • /
    • 2007
  • Ferritic stainless steels for the SOFC interconnect applications are required to possess not only a good oxidation resistance, but also a high electrical conductivity of the oxide scale that forms during exposure at the SOFC operating environment. In order to understand the effects of alloying elements on the oxidation behavior of ferritic stainless steels and on the electrical properties of oxide scales, two kinds of commercial ferritic stainless steels, STS 430 and STS 444, were investigated by performing isothermal oxidations at $800^{\circ}C$ in a wet air containing 3% $H_{2}O$. The results showed that STS 444 was superior to STS 430 in both of the oxidation resistance and the area specific resistance. Although STS 444 contained a less amount of Mn for the $(Mn,Cr)_{3}O_{4}$ spinel formation than STS 430, the minor alloying elements of Al and Mo in STS 444, which were accumulated in the base metal region adjacent the scale, were suggested to reduce the scale growth rate and to enhance the scale adherence to the base metal.

PVT 법으로 성장 된 bulk AlN 단결정의 열 산화 공정에 관한 연구 (A study on the thermal oxidation process of bulk AlN single crystal grown by PVT)

  • 강효상;강승민
    • 한국결정성장학회지
    • /
    • 제30권5호
    • /
    • pp.168-173
    • /
    • 2020
  • AlN의 열 산화 공정에서 발생하는 거동 및 메커니즘을 확인하기 위해 bulk AlN 단결정에 대해 대기분위기에서 온도에 따라 열처리를 수행하였다. 800℃의 온도에서 bulk AlN의 본격적인 산화 및 Al-oxide 들의 성장이 일어난 것을 확인하였고, 온도가 증가함에 따라 산소 성분의 wt%가 증가하는 반면 질소 성분의 wt%는 감소하는 경향을 보였다. 900℃에서 열처리하는 경우, 성장 된 Al-oxide은 이웃한 Al-oxide와 merging되어 α-Al2O3 다결정을 형성하기 시작했다. 1000℃의 온도에서 열처리하는 동안, 육각 피라미드 형 α-Al2O3 다결정이 명확히 형성되었음을 확인하였다. X-선 회절 패턴 분석을 통해 bulk AlN의 온도에 따른 표면 결정 구조의 변화를 자세히 조사하였다.

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

  • Kim, Seong-Hwan;Huh, Joo-Youl;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.15-22
    • /
    • 2017
  • An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure ($P_{O_2}$) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at $700^{\circ}C$ under atmospheres with various $P_{O_2}$ values. Irrespective of $P_{O_2}$, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a $Fe_2O_3/Fe_3O_4$ bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as $(Fe,Mn)_2O_3$. The multilayered structure of $(Fe,Mn)_2O_3/Fe_2O_3/Fe_3O_4$/amorphous Si-Mn-O remained even after extended oxidizing at $700^{\circ}C$ for 60 s. $Fe_2O_3$ was the dominantly growing oxide phase in the scale. The enhanced growth rate of $Fe_2O_3$ with increasing $P_{O_2}$ resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.

MOCVD를 이용한 대면적 CdTe 단결정 박막성장 (Growth of Large Scale CdTe(400) Thin Films by MOCVD)

  • 김광천;정규호;유현우;임주혁;김현재;김진상
    • 한국전기전자재료학회논문지
    • /
    • 제23권4호
    • /
    • pp.343-346
    • /
    • 2010
  • We have investigated growth of CdTe thin films by using (As, GaAs) buffer layers for application of large scale IR focal plane arrays(IFPAs). Buffer layers were grown by molecular beam epitaxy(MBE), which reduced the lattice mismatch of CdTe/Si and prevented native oxide on Si substrates. CdTe thin films were grown by metal organic chemical deposition system(MOCVD). As a result, polycrystalline CdTe films were grown on Si(100) and arsenic coated-Si(100) substrate. In other case, single crystalline CdTe(400) thin film was grown on GaAs coated-Si(100) substrate. Moreover, we observed hillock structure and mirror like surface on the (400) orientated epitaxial CdTe thin film.

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • 박신영;최광현;강현철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF

판상형 산화아연의 합성 및 응용에 관한 연구 동향

  • 장의순
    • 세라미스트
    • /
    • 제20권4호
    • /
    • pp.55-73
    • /
    • 2017
  • As one of the most versatile semiconductors, zinc oxide (ZnO) with one-dimensional (1-D) nanostructures has been significantly developed for the application of ultraviolet (UV) lasers, photochemical sensors, photocatalysts, and so on. Such 1-D nanowires could be easily achieved due to the anisotropic growth rate along the [0001] direction. However, such typical growth habit leads to decrease the surface area of the (0001) plane, which plays a central role in not only UV lasing action but also photocatalytic reaction. This fact lead us to develop ZnO crystal with enhanced polar surface area through crystal growth control. The purpose of this review is to provide readers a simple route to plate-type ZnO crystal with highly enhanced polar surfaces and their applications for UV-laser, photocatalyst, and antibacterial agents. In addition, we will highlight the recent study on pilot-scale synthesis of plate-type ZnO crystal for industrial applications.

Recent Progress in Synthesis of Plate-like ZnO and its Applications: A Review

  • Jang, Eue-Soon
    • 한국세라믹학회지
    • /
    • 제54권3호
    • /
    • pp.167-183
    • /
    • 2017
  • Zinc oxide (ZnO) is one of the most versatile semiconductors, and one-dimensional (1D) ZnO nanostructures have attracted significant interest for use in ultraviolet (UV) lasers, photochemical sensors, and photocatalysts, among other applications. It is known that 1D ZnO nanowires can be fabricated readily owing to the anisotropic growth of ZnO along the [0001] direction. However, this type of growth results in a decrease in the surface area of the (0001) plane, which plays a vital role not only in UV lasing but also in the photocatalytic process. Thus, we attempted to synthesize ZnO crystals with an increased polar surface area by controlling the crystal growth process. The purpose of this review is to propose a simple route for the synthesis of plate-like ZnO crystals with highly enhanced polar surfaces and to explore their feasibility for use in UV lasers as well as as a photocatalyst and antibacterial agent. In addition, we highlight the recent progress made in the pilot-scale synthesis of plate-like ZnO crystals for industrial applications.

The Analysis of Three-dimensional Oxidation Process with Elasto-viscoplastic Model

  • Lee Jun-Ha;Lee Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권6호
    • /
    • pp.215-218
    • /
    • 2004
  • This paper presents a three-dimensional numerical simulation for thermal oxidation process. A new elasto-viscoplastic model for robust numerical oxidation simulation is proposed. The three-dimensional effects of oxidation process such as mask lifting effect and corner effects are analyzed. In nano-scale process, the oxidant diffusion is punched through to the other side of the mask. The mask is lifted so the thickness of oxide region is greatly enhanced. The compressive pressure during the oxidation is largest in the mask corner of the island structure. This is because the masked area near the corner is surrounded by an area larger than the others in the island structure. This stress induces the retardation of the oxide growth, especially at the masked corner in the island structure.