• 제목/요약/키워드: Oxide nanoparticle

검색결과 244건 처리시간 0.03초

염수환경에서 탄소섬유/에폭시 복합재료의 내구성에 미치는 나노입자의 영향 (Nanoparticle Effect on Durability of Carbon fiber/Epoxy Composites in Saline Water Environment)

  • 김부안;문창권
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.64-68
    • /
    • 2014
  • This study was conducted to investigate the durability of carbon fiber/epoxy composites (CFRP) in a saline water environment. The carbon fiber/epoxy composites were modified to use nanoparticles such as carbon nanotubes and titanum oxide. These hybrid composites were exposed to a saline water environment for a certain period. The weight gain according to the immersion time, a quasi-static tensile test, and micro-graphic characterization were used to investigate the samples exposed to the saline water environment. The weight gains increased with increasing immersion time. The weight gains of the hybrid composites were lower than that for pure CFRP throughout the entire immersion time. The tensile strengths decreased with increasing immersion time. The tensile strengths of the hybrid composites were higher than that of the pure CFRP throughout the entire immersion time. The pure CFRP was observed to be more degraded than the hybrid composites in the saline water environment. Therefore, it was concluded that the addition of nanoparticles to CFRP could lead to improved durability in a saline water environment.

나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황 (Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication)

  • 고승환
    • 대한기계학회논문집B
    • /
    • 제35권5호
    • /
    • pp.533-538
    • /
    • 2011
  • 대부분의 유연전기소자는 플라스틱, 옷감, 종이와 같이 고온에 민감한 물질이기 때문에 열에 민감한 기판 위에 금속을 증착하고 패터닝할 수 있는 저온 공정의 개발이 필요하다. 최근 기존의 광식각과 진공증착 방법을 이용하지 않고 액상으로 금속 나노입자의 박막을 형성하고 선택적 레이저 소결을 이용하여 플라스틱에 열적손상을 최소화하고 고해상도의 금속 패터닝을 방법이 많은 연구가 활발히 진행되고 있다. 본 논문에서는 본 연구실에서 활발히 수행중인 나노물질의 선택적 레이저소결법을 이용하여 유연 디스플레이와 유연태양전지와 같은 유연전기소자의 개발 동향에 대해 알아보고 앞으로의 발전방향에 대해 논의한다.

Implications of SPION and NBT Nanoparticles upon In Vitro and In Situ Biodegradation of LDPE Film

  • Kapri, Anil;Zaidi, M.G.H.;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권6호
    • /
    • pp.1032-1041
    • /
    • 2010
  • The comparative influence of two nanoparticles [viz., superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT)] upon the in vitro and in situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium was studied. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in vitro conditions, ${\lambda}$-max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/$CH_2$ vibrations, along with introduction of hydroxyl residues in the polymer backbone. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM), which revealed greater dissolution of the film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions, which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.

Clonazepam Release from Core-shell Type Nanoparticles In Vitro

  • Kim, Hyun-Jung;Jeong, Young-Il;Kim, Sung-Ho;Lee, Young-Moo;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • 제20권4호
    • /
    • pp.324-329
    • /
    • 1997
  • AB-type amphiphilic copolymers (abbreviated as LE) composed of poly (L-leucine) (PLL) as the A component and poly (ethylene oxide) (PEO) as the B component were synthesized by the ring-opening polymerization of L-leucine N-carboxy-anhydride initiated by methoxy polyoxyethylene amine $(Me-PEO-NH_2)$ and characterized. Core-shell type nanoparticles were prepared by the diafiltration method. Particle size distribution obtained by dynamic light scattering was dependent on PLL composition and the size for LE-1, LE-2 and LE-3 was $369.6{\pm}267$, $523.4{\pm}410$ and $561.2{\pm}364 nm$, respectively. Shapes of the nanoparticies observed by transmission electron microscope (TEM) were almostly spherical. The critical micelle concentration (CMC) of the nanoparticles determined by a fluorescence probe technique was dependent on the composition of hydrophobic PLL, and the CMC for LE-1, LE-2 and LE-3 was $2.0{\times}10^{-6},1.7{\times}10^{-6}$ and $1.5{\times}10^{-6}(mol/l) $, respectively. Clonazepam release from core-shell type nanoparticles in vitro was dependent on PLL composition and drug loading content.

  • PDF

전자장치 응용을 위한 금속(은, 구리) 나노입자의 합성 (Synthesis of Metal Nanoparticles for the Application of Electronic Device)

  • 전병호;조수환;조정민;김성은;김동훈;김성진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.53-53
    • /
    • 2010
  • The development of synthetic pathway to produce a highly yield nanoparticles is an important aspect of industrial technology. Herein, we report a simple, rapid approach to synthesize organic-soluble Cu and Ag nanoparticles in colloidal method for the application in a conductive pattern using inkjet printing. The silver nanoparticles have been synthesized in highly concentrated organic phase. The Cu nanoparticles have been synthesized by the reducing of the copper oxide materials using acid molecules in high concentrated organic phase. Their sintering and electric conductivity properties were investigated by melting process between $200^{\circ}C$ and $250^{\circ}C$ for application to printed electronics.

  • PDF

전기방사를 이용한 히알루론산 멤브레인의 제조 및 금 나노입자 촉매 담체로의 응용 (Fabrication of hyaluronic acid membrane using electrospinning method and its application as a catalyst support for gold nanoparticles)

  • 이남훈;박현민;이상명;이대원
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.15-19
    • /
    • 2018
  • In this study, hyaluronic acid (HA) was electro-spun to fabricate nanofibrous membranes for support materials. Because HA is very hygroscopic, it is difficult to obtain enough viscosity to apply electrospinning method. Therefore, we mixed HA with polyethylene oxide (PEO) to obtain proper viscosity and added adipic acid (ADH) to promote cross-linking of PEO/HA during electrospinning. The morphology of PEO/HA membrane was optimized according to PEO/HA concentration ratio and spinning rate. Finally, we fabricated gold-nanoparticle-embedded PEO/HA membranes and their catalyst activities were evaluated in tetramethylbenzidine (TMB) oxidation.

Effects of Concentration of ZnO Nanoparticles on Mechanical, Optical, Thermal, and Antimicrobial Properties of Gelatin/ZnO Nanocomposite Films

  • Shankar, Shiv;Teng, Xinnan;Rhim, Jong-Whan
    • 한국포장학회지
    • /
    • 제20권2호
    • /
    • pp.41-49
    • /
    • 2014
  • This study illustrates the synthesis of gelatin based zinc oxide nanoparticle (ZnONPs) incorporated nanocomposite films using different concentrations of ZnONPs. The ZnONPs were oval in shape and the size ranged from 100- 200 nm. The nanocomposite films were characterized by UV-visible, FE-SEM, FT-IR, and XRD. The concentrations of ZnONPs greatly influenced the properties of nanocomposite films. The absorption peaks around 360 nm increased with the increasing concentrations of ZnONPs. The surface color of film did not change while transmittance at 280 nm was greatly reduced with increase in the concentration of ZnONPs. FTIR spectra showed the interaction of ZnONPs with gelatin. XRD data demonstrated the crystalline nature of ZnONPs. The thermostability, char content, water contact angle, water vapor permeability, moisture content, and elongation at break of nanocomposite films increased, whereas, tensile strength and modulus decreased with increase in the concentrations of ZnONPs. The gelatin/ZnONPs nanocomposite films showed profound antibacterial activity against both Gram-positive and Gram-negative food-borne pathogenic bacteria. The gelatin/$ZnONP^{1.5}$ nanocomposite film showed the best UV barrier and antimicrobial properties among the tested-films, which indicated a high potential for use as an active food packaging films with environmentally-friendly nature.

  • PDF

Synthesis of Single-walled Carbon Nanotubes with a Narrow Diameter Distribution via Size-controlled Iron Oxide Nanoparticle Catalyst

  • 김성환;송우석;김유석;이수일;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.568-568
    • /
    • 2012
  • 뛰어난 물리적, 전기적 특성을 가진 단일벽 탄소나노튜브는 여러 분야에서 응용 가능성이 매우 높은 물질이다. 그러나 단일벽 탄소나노튜브의 전기적 특성은 나노튜브의 직경과 카이랄리티(chirality)에 매우 강하게 의존되기 때문에 균일한 직경과 카이랄리티를 갖는 단일벽 탄소나노 튜브만의 사용은 나노튜브 기반의 전자소자 응용에서 매우 중요하다. 균일한 직경과 카이랄리티의 단일벽 탄소나노튜브를 얻는 방법은 나노튜브 합성을 통한 직접적인 방법과 후처리 기술을 통해 가능하며, 최근에는 금속 나노입자를 촉매로서 화학기상증착(Chemical vapor deposition, CVD)을 이용하여 좁은 직경 분포를 갖는 단일벽 탄소나노튜브의 합성이 보고되었다. 화학기상 증착은 용이하게 단일벽 탄소나노튜브를 합성하며, 성장된 나노튜브의 직경은 촉매금속 나노입자의 크기에 의해 결정된다. 본 연구는 크기가 제어된 산화철 나노입자를 촉매금속으로 사용하여 열화학기상증착법을 이용해 직경분포가 매우 좁고 균일한 단일벽 탄소나노튜브를 합성하였다. 합성된 단일벽 탄소나노튜브 직경과 카이랄리티는 라만 분광법(Raman spectroscopy)과 투과 전자현미경(Transmission electron microscope)을 이용하여 분석하였다.

  • PDF

연소합성을 이용한 저온형 고체산화물 연료전지용 나노구조 세리아계 전해질 제조 (Synthesis of Nanocrystalline Ceria for IT-SOFC by Glycine Nitrate Combustion Process)

  • 조승환;김종호;김도경
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.821-826
    • /
    • 2005
  • Gadolinia-doped ceria nanopowder was prepared by glycine-nitrate combustion method with different glycine/nitrate mixing ratio. The characteristics of the synthesized powder were investigated by X-ray diffraction method, transmission electron microscopy, thermal gravity, differential thermal analysis and thermo-mechanical analysis. The smallest powder was obtained with glycine/nitrate ratio 1.00 and the lowest organic and water vapor contained powder was made with glycine/nitrate ratio 1.75. According to dilatometry, fast densification was occurred around $1000^{\circ}C$ and shows full density over $1300^{\circ}C$. Finally near-fully dense ceria electrolyte was fabricated with conventional sintering technique. Glycine-nitrate process yields fine nanopowders which enable low temperature sintering and fabrication of fully dense and nanostructured oxide electrolyte.

Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

  • Shin, Seung-Hyun;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3077-3083
    • /
    • 2010
  • The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M $H_2SO_4$. The nanoPt-Fe(III)/MWCNT/GCE was prepared via continuous potential cycling in the range from -0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM $K_2PtCl_6$ and 0.6 mM $FeCl_3$. The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of $4.76\;{\mu}A{\mu}M^{-1}$, while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection.