DOI QR코드

DOI QR Code

Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

  • Shin, Seung-Hyun (Department of Chemistry Education, Seoul National University) ;
  • Hong, Hun-Gi (Department of Chemistry Education, Seoul National University)
  • Received : 2010.06.04
  • Accepted : 2010.08.02
  • Published : 2010.11.20

Abstract

The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M $H_2SO_4$. The nanoPt-Fe(III)/MWCNT/GCE was prepared via continuous potential cycling in the range from -0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM $K_2PtCl_6$ and 0.6 mM $FeCl_3$. The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of $4.76\;{\mu}A{\mu}M^{-1}$, while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection.

Keywords

References

  1. World Health Organization, United Nations Synthesis Report on Arsenic in Drinking Water, http://www.who.int/water_sanitation_ health/dwq/arsenic3/en/
  2. Mandal, B. K.; Suzuki, K. T. Talanta 2002, 58, 201. https://doi.org/10.1016/S0039-9140(02)00268-0
  3. Smith, A. H.; Lingas, E. O.; Rahman, M. Bulletin of the World Health Organization. 2000, 9, 1093.
  4. Mukherjee, A.; Sengupta, M. K.; Hossain, M. A.; Ahamed, S.; Das, B.; Nayak, B.; Lodh, D.; Rahman, M. M.; Chakraborti, D. J. Health. Popul. Nutr. 2006, 24, 142.
  5. World Health Organization, Arsenic in drinking water, http://www. who.int/mediacentre/factsheets/fs210/en/index.html, RevisedMay- 2001
  6. Nam, S. H.; Kim, J. J.; Han S. S. Bull. Korean Chem. Soc. 2003, 24, 1805. https://doi.org/10.5012/bkcs.2003.24.12.1805
  7. Lopez, A. C.; Castro, M. D. L. Anal. Chem. 2003, 75, 2011. https://doi.org/10.1021/ac026156u
  8. Hung, D. Q.; Nekrassova, O.; Compton, R. G. Talanta 2004, 64, 269. https://doi.org/10.1016/j.talanta.2004.01.027
  9. Wang, S. Stripping Analysis: Principles, Instrumentation, and Applications; VCH Publishers: 1985.
  10. Santos, D. H.; Garcia, M. B. G.; Garcia, A. C. Electroanalysis 2002, 14, 1225. https://doi.org/10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-Z
  11. Mays, D. E.; Hussam, A. Anal. Chim. Acta 2009, 646, 6. https://doi.org/10.1016/j.aca.2009.05.006
  12. Majid, E.; Hrapovic, S.; Liu, Y.; Male, K. B.; Luong, J. H. T. Anal. Chem. 2006, 78, 762. https://doi.org/10.1021/ac0513562
  13. Hossain, M. M.; Islam, M. M.; Ferdousi, S.; Okajima, T.; Ohsaka, T. Electroanalysis 2008, 20, 2435. https://doi.org/10.1002/elan.200804339
  14. Dai, X.; Compton, R. G. Electroanalysis 2005, 17, 14.
  15. Yamada, D.; Ivandini, T. A.; Komatsu, M.; Fujishima, A.; Einaga, Y. J. Electroanal. Chem. 2008, 615, 145. https://doi.org/10.1016/j.jelechem.2007.12.004
  16. Rassaei, L.; Sillanpaa, M.; French, R. W.; Compton, R. G.; Marken, F. Electroanalysis 2008, 20, 1286. https://doi.org/10.1002/elan.200804226
  17. Xiao, L.; Wildgoose, G. G.; Compton, R. G. Anal. Chim. Acta 2008, 620, 44. https://doi.org/10.1016/j.aca.2008.05.015
  18. Baron, R.; Sljukic, B.; Salter, C.; Crossley, A.; Compton, R. G. Russian Journal of Physical Chemistry A 2007, 81, 9. https://doi.org/10.1134/S0036024407010037
  19. Dai, X.; Wildgoose, G. G.; Salter, C.; Crossley, A.; Compton, R.G. Anal. Chem. 2006, 78, 6102. https://doi.org/10.1021/ac060582o
  20. Jena, B. K.; Raj, C. R. Anal. Chem. 2008, 80, 4836. https://doi.org/10.1021/ac071064w
  21. Simm, A. O.; Banks, C. E.; Compton, R. G. Electroanalysis 2005, 17, 1727. https://doi.org/10.1002/elan.200503299
  22. Dai, X.; Compton, R. G. Analyst 2006, 131, 516. https://doi.org/10.1039/b513686e
  23. Xu, H.; Zeng, L.; Xing, S. J.; Shi, G. Y.; Chen, J.; Xian, Y. Z.; Jin,L. Electrochem. Commun. 2008, 10, 1893. https://doi.org/10.1016/j.elecom.2008.09.037
  24. Hrapovic, S.; Liu, Y.; Luong, J. H. T. Anal. Chem. 2007, 79, 500. https://doi.org/10.1021/ac061528a
  25. Ivandini, T. A.; Sato, R.; Makide, Y.; Fujishima, A.; Einaga, Y. Anal. Chem. 2006, 78, 6291. https://doi.org/10.1021/ac0519514
  26. Male, K. B.; Hrapovic, S.; Santini, J. M.; Luong, J. H. T. Anal. Chem. 2007, 79, 7831. https://doi.org/10.1021/ac070766i
  27. Sue, J. W.; Ku, H. H.; Chung, H. H.; Zen, J. M. Electrochem. Commun. 2008, 10, 987. https://doi.org/10.1016/j.elecom.2008.03.017
  28. Salimi, A.; Mamkhezri, H.; Hallaj, R.; Soltanian, S. Sensors and Actuators B 2008, 129, 246. https://doi.org/10.1016/j.snb.2007.08.017

Cited by

  1. Applications of nanoscale carbon-based materials in heavy metal sensing and detection vol.136, pp.21, 2011, https://doi.org/10.1039/c1an15574a
  2. Electrodeposition and stripping voltammetry of arsenic(III) and arsenic(V) on a carbon black–polyethylene composite electrode in the presence of iron ions vol.16, pp.7, 2012, https://doi.org/10.1007/s10008-012-1774-8
  3. Anodic stripping voltammetric determination of arsenic(III) using a glassy carbon electrode modified with gold-palladium bimetallic nanoparticles vol.178, pp.1-2, 2012, https://doi.org/10.1007/s00604-012-0827-0
  4. Detection of Trace Copper Metal at Carbon Nanotube Based Electrodes Using Squarewave Anodic Stripping Voltammetry vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.801
  5. Recent advances in electrochemical detection of arsenic in drinking and ground waters vol.6, pp.16, 2014, https://doi.org/10.1039/C4AY00817K
  6. Enhanced Cathodic Preconcentration of As(0) at Au and Pt Electrodes for Anodic Stripping Voltammetry Analysis of As(III) and As(V) vol.119, pp.21, 2015, https://doi.org/10.1021/acs.jpcc.5b01435
  7. Pt Clusters: Implications in Adsorption and Sensing vol.119, pp.26, 2015, https://doi.org/10.1021/acs.jpca.5b03832
  8. ) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles vol.44, pp.47, 2015, https://doi.org/10.1039/C5DT03958D
  9. Characterization of iron-modified carbon paste electrodes and their application in As(V) detection vol.46, pp.2, 2016, https://doi.org/10.1007/s10800-015-0903-3
  10. Nanocarbon-based Electrochemical Detection of Heavy Metals vol.28, pp.10, 2016, https://doi.org/10.1002/elan.201600173
  11. Trace Determination of Arsenite With an Ionophore-Coated Selective Micro Sensor vol.18, pp.11, 2018, https://doi.org/10.1109/JSEN.2018.2825332
  12. Thermally stable hybrid polyarylidene(azomethine-ether)s polymers (PAAP): an ultrasensitive arsenic(III) sensor approach vol.21, pp.1, 2018, https://doi.org/10.1080/15685551.2018.1471793
  13. Shrink-induced ultrasensitive mercury sensor with graphene and gold nanoparticles self-assembly pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3925-z
  14. Glassy Carbon Electrodes Film‐Modified with Acidic Functionalities. A Review vol.24, pp.7, 2010, https://doi.org/10.1002/elan.201200125
  15. 벗김전압전류법을 이용한 카본나노튜브 전극에서의 구리 분석 vol.50, pp.5, 2010, https://doi.org/10.9713/kcer.2012.50.5.933
  16. Determination of arsenic(III) based on the fluorescence resonance energy transfer between CdTe QDs and Rhodamine 6G vol.5, pp.23, 2015, https://doi.org/10.1039/c4ra16789a
  17. Electrochemical Detection of Trace Amount of Arsenic (III) at Glassy Carbon Electrode Modified with Au/Fe3O4 Nanocomposites vol.4, pp.None, 2010, https://doi.org/10.1016/j.aqpro.2015.02.140
  18. Enhanced Electrochemical Sensing with Carbon Nanotubes Modified with Bismuth and Magnetic Nanoparticles in a Lab‐on‐a‐Chip vol.2, pp.9, 2010, https://doi.org/10.1002/cnma.201600174
  19. Nanomaterials: Electrochemical Properties and Application in Sensors vol.3, pp.9, 2010, https://doi.org/10.1515/psr-2018-8050
  20. Nanomaterials: Electrochemical Properties and Application in Sensors vol.3, pp.9, 2010, https://doi.org/10.1515/psr-2018-8050
  21. Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III) vol.9, pp.1, 2019, https://doi.org/10.3390/nano9010041
  22. Nanoparticle‐ and Nanotube‐Modified Electrodes: Response of Drop‐Cast Surfaces vol.7, pp.22, 2010, https://doi.org/10.1002/celc.202001295
  23. Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water-A Review vol.22, pp.1, 2022, https://doi.org/10.3390/s22010218