• Title/Summary/Keyword: Oxide loss

Search Result 481, Processing Time 0.026 seconds

Heat Resistant Low Emissivity Oxide Coating on Stainless Steel Metal Surface and Characterization of Emissivity (스테인리스강 금속 표면에 내열 저방사 산화물 코팅제 적용과 방사 특성 평가)

  • Lim, Hyung-Mi;Kwon, Tae-Il;Kim, Dae-Sung;Lee, Sang-Yup;Kang, Dong-Pil;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.649-656
    • /
    • 2009
  • Inorganic oxide colloids dispersed in alcohol were applied to a stainless steel substrate to produce oxide coatings for the purpose of minimizing emissive thermal transfer. The microstructure, roughness, infrared emissive energy, and surface heat loss of the coated substrate were observed with a variation of the nano oxide sol and coating method. It was found that the indium tin oxide, antimony tin oxide, magnesium oxide, silica, titania sol coatings may reduce surface heat loss of the stainless steel at 300${\circ}C$. It was possible to suppress thermal oxidation of the substrate with the oxide sol coatings during an accelerated thermal durability test at 600${\circ}C$. The silica sol coating was most effective to suppress thermal oxidation at 600${\circ}C$, so that it is useful to prevent the increase of radiative surface heat loss as a heating element. Therefore, the inorganic oxide sol coatings may be applied to improve energy efficiency of the substrate as the heating element.

Comparison for Loss Rate of Low Concentration Nitrous Oxide in Tedlar Bag and Aluminium-Polyester Bag (테들러백과 알루미늄-폴리에스터백에 보관된 저농도 아산화질소의 유실율 비교)

  • Lee, Woo Chan;Park, Sung Bin;Ko, Young Hwan;Hyun, Seung Min;Yoon, Kyoon Duk
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The emission quantity of nitrous oxide is second largest among non-$CO_2$ greenhouse gas in Korea. In this study, we investigated loss rate of nitrous oxide which was filled in PVF and Al-PE bag as time goes on. Concentrations of tested samples were about 25 ppmv, 50 ppmv, 75 ppmv prepared by standard reference gas. In case of all experiments, loss rate of PVF bag was higher than Al-PE bag. After 18 days, loss rate of PVF bag was from 29.7% to 38.6% while Al-PE bag was from 21.7% to 23.7%. Especially the differential growed bigger when initial concentration of $N_2O$ in PVF bag was lower. And we also studied the effect of cock opening/closing procedures on loss rate. Prepared samples in experimental group were analyzed several times for 20 days and samples in control group were analysed only 1 time after 20 days. The experimental results showed that cock opening/closing procedures appeared to have little impact on loss rate.

The Oxide Coating Effects on the Magnetic Properties of Amorphous Alloys

  • 배영제;Jang, Ho G.;Chae, Hee K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.621-625
    • /
    • 1996
  • A variety of metal oxides were coated by sol-gel process from their metal alkoxides on the ribbons of Co-based and Fe-based amorphous alloys, and the effects of surface oxide coating on the magnetic properties of the alloy are investigated. The core loss is found to be reduced significantly by the oxide coating, the loss reduction becoming more prominent at higher frequencies. The shape of the hystersis loop is also dependent upon the kind of the coated metal oxide. The coatings of MgO, SiO2, MgO·SiO2 and MgO·Al2O3 induce tensile stress into the Fe-based ribbon whereas those of BaO, Al2O3, CaO·Al2O3, SrO·Al2O3 and BaO·Al2O3 induce compressive stress. These results may be explained by the modification of domain structures via magnetoelastic interactions with the shrinkage stress induced by the sol-gel coating.

Modeling As(III) and As(V) adsorption and transport from water by a sand coated with iron-oxide colloids

  • Ko, Il-Won;Lee, Cheol-Hyo;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.243-247
    • /
    • 2004
  • Tile development of a porous iron-oxide coated sand filter system can be modelled with the analytical solution of tile transport equation in order to obtain the operating parameters and investigate the mechanism of arsenic removal. The adsorbed amount from the model simulation showed the limitation of adsorption removal during arsenic transport. A loss reaction term in the transport equation plays a role in the mass loss in column conditions, and then resulted into the better model fitting, particularly, for arsenate. Further, the competitive oxyanions delayed the breakthrough near MCL (10 $\mu$g/L) due to the competitive adsorption. This is the reason why arsenate can be strongly attracted in tile interface of an iron-oxide coated sand, and competing oxyanions can occupy the adsorption sites. Therefore, arsenic retention was regulated by non-equilibrium of arsenic adsorption in a porous iron-oxide coated sand media. The transport-limited process seemed to be affect the arsenic adsorption by coated sand.

  • PDF

Physical Property Models and Single Cells Analysis for Solid Oxide Fuel Cell (고체산화물 연료전지를 위한 물성치 모델 및 단전지 해석)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.379-381
    • /
    • 2009
  • The simulation model for metal-supported Solid Oxide Fuel Cell(SOFC) is developed in this study. Open circuit voltage is calculated using Nernst equation and Gibbs free energy is required by thermodynamic. The exchange current densities are compared with experimental results since exchange current density is most effective factor for the activation loss. Liu's study is used for the exchange current density of cathode, BSCF, and Koide's result is applied for the exchange current density of anode, Ni/YSZ. For the ohmic loss, ionic conductivity of YSZ is described from Kilner's mode and the data are compared with Wanzenberg's experimental data. Diffusivity is an important factor for the mass transfer through the porous medium. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results.

  • PDF

Thermomechanical Properties of Poly(D, L-actic-co-glycolic acid) and Graphene Oxide Nanocomposite for Scaffolds

  • Sohn, Il-Yung;Yoon, Ok-Ja;Kim, Duck-Jin;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.478-478
    • /
    • 2011
  • The thermomechanical and surface chemical properties of nanocomposite of poly( D, L-actic-co-glycolic acid) (PLGA) were improved significant due to concentration of graphene oxide (GO) nanosheets as nanoscale fillers to PLGA film. Thermomechanical properties of the PLGA/GO (2wt.-%.) nanocomposite were decreased crystallization and melting temperature, weight loss. The storage and loss moduli of the nanocomposite were enhanced by chemical bonding between the oxygenated functional groups of the GO nanosheets and the polymer chains in the PLGA matrix. Enhanced hydrophilicity of nanocomposite caused by embedded GO nanosheets also improved for good biocompatibility. Our findings indicate that thermomechanical properties and biocompatibility of nanocomposite embedded with GO nanosheets are attractive candidates for use in biomedical applications such as scaffolds.

  • PDF

Properties of Multicomponent Glass Optical Fiber by adding $Ga_2O_3$ ($Ga_2O_3$ 첨가에 따른 다성분계 glass optical fiber의 특성)

  • 윤상하;강원호
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.210-216
    • /
    • 1997
  • The th ermal and optical properties of multicomponent oxide glass optical fiber by adding heavy metal oxide Ga$_{2}$O$_{3}$(0-20wt%) were investigated. The fiber samples were made by the method of rod in tube. The optical loss of fiber was measured in 0.3-1.8.mu.m wavelength region. As Ga$_{2}$O$_{3}$ increased up to 20wt%, the transition and softening temperature of bulk glass were increased from 495.deg. C to 579.deg. C and from 548.deg. C to 641.deg. C, respectively. Whereas the thermal expansion coefficient was decreased from 102 to 79.1x10$^{-7}$ /.deg. C. The refractive index was increased from 1.621 to 1.665, and IR cut-off wavelength was enlarged from 4.64.mu.m to 6.1.mu.m. The optical loss of fiber was remarkably decreased in 1.146.mu.m-1.8.mu.m wavelength region.

  • PDF

Electrodeposited Nano-flakes of Manganese Oxide on Macroporous Ni Electrode Exhibiting High Pseudocapacitance

  • Gobal, F.;Jafarzadeh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.178-184
    • /
    • 2012
  • A porous nickel (P-Ni) substrate was prepared by selective leaching of zinc from pressed pellets containing powders of Ni & Zn in 4 M NaOH solution. Anodic deposition of manganese oxide onto the porous Ni substrate ($MnO_x$/P-Ni) formed nano-flakes of manganese oxide layers as revealed in SEM studies. Pseudocapacitance of this oxide electrode was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CHP) in 2 M NaOH solution. The specific capacitance of the Mn oxide electrode was as high as 1515 F $g^{-1}$, which was ten times higher than Mn oxide deposited on a flat Ni-ribbon. 80% of capacity was retained after 200 charge/discharge cycles. The system showed no loss of activity in dry form over period of days. The impedance studies indicated highly conducting $MnO_x$/P-Ni substance and the obtained specific capacitance from impedance data showed good agreement with the charge/discharge measurements.

Understanding Deactivation of Ru Catalysts by In-situ Investigation of Surface Oxide Stability under CO Oxidation and Oxidative/Reductive Conditions

  • Qadir, Kamran;Joo, Sang-Hoon;Mun, Bong-Jin S.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.212-212
    • /
    • 2011
  • In addition to the catalysts' activity and selectivity, the deactivation of catalysts during use is of practical importance. It is crucial to understand the phenomena of the deactivation to predict the loss of activity during catalyst usage so that the high operational costs associated with catalyst replacement can be reduced. In this study, the activity of Ru catalysts, such as nanoparticles (3~6 nm) and polycrystalline thin film (50 nm), have been investigated under CO oxidation and oxidative/reductive reaction conditions at various temperatures with the ambient pressure X-Ray photoelectron spectroscopy (APXPS). With APXPS, the surface oxides on the catalyst are measured and monitored in-situ. It was found that the Ru film exhibited faster oxidation-and-reduction compared to that of nanoparticles showing mild oxidative-and-reductive characteristics. Additionally, the larger Ru nanoparticles showed a higher degree of oxide formation at all temperatures, suggesting a higher stability of the oxide. These observations are in agreement with the catalytic activity of Ru catalysts. The loss of activity of Ru films is correlated with bulk oxide formation, which is inactive in CO oxidation. The Ru nanoparticle, however, does not exhibit deactivation under similar conditions, suggesting that its surface is covered with a highly active ultrathin surface oxide. Since the active oxide is more stable as nanoparticles than as a film, the nanoparticles showed mild oxidative/reductive behavior, as confirmed by APXPS results. We believe these simultaneous observations of both the surface oxide of Ru catalysts and the reactivity in real time enable us to pinpoint the deactivation phenomena more precisely and help in designing more efficient and stable catalytic systems.

  • PDF

Microstructure and Electrical Properties of $SiO_2$-Doped Zinc Oxide Varistors ($SiO_2$가 첨가된 산화아연 바리스터의 미세구조 및 전기적 특성)

  • 남춘우;정순철
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.659-667
    • /
    • 1997
  • The influence of SiO$_2$on the microstructure and electrical properties of zinc oxide varistor was investigated. Zn$_2$SiO$_4$third phase in the sintered body was found at grain boundaries, multiple grain junctions, and occasionally within ZnO grains. This phase acted as a grain growth inhibitor, which retard the grain growth of the ZnO matrix by impeding migration on the grain boundaries. As SiO$_2$ addition increases, average grain size decreased from 40.6${\mu}{\textrm}{m}$ to 26.9${\mu}{\textrm}{m}$ due to the pinning effect by Zn$_2$SiO$_4$ and drag effect by Si segregation at grain boundaries, the breakdown voltage consequently increased. When SiO$_2$ addition is increased, interface state density decreased, however, the barrier height increased by decrease of donor concentration, as a result, the nonlinear exponent increased and leakage current decreased. While, as SiO$_2$ addition increase, it was found that the apparent dielectric loss factor shows a tendency of decrease. Wholly, electrical properties of zinc oxide varistor can be said to be improved by SiO$_2$addition.

  • PDF