• Title/Summary/Keyword: Oxide layers

Search Result 869, Processing Time 0.03 seconds

Corrosion and Strength Degradation Characteristics of 1.25Cr-0.5Mo Steel under SO2 Gas Environment (SO2 가스 환경 하에서 1.25Cr-0.5Mo 강의 부식 및 강도 저하 특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.149-156
    • /
    • 2018
  • The corrosion and strength degradation characteristics of 1.25Cr-0.5Mo steels were studied under $650^{\circ}C$ in $76%N_2+6%O_2+16%CO_2+2%SO_2$ gas condition up to 500 hrs. Corroded specimens were characterized by weight gain, scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDS), and X-ray diffraction(XRD). The tensile test was conducted to evaluate the mechanical strength and fracture mode with corrosion at high temperature. As the results of the experiments, thick Fe-rich oxide layers over $200{\mu}m$ were formed on the surface within 500 hrs. The thick oxide layers are formed with reduction of the cross-sectional area of the specimens. Thus, the strength tended to decrease with reduction of the cross-sectional area.

Highly Transparent Indium Oxide Doped ZnO Spreading Layer for GaN Based Light Emitting Diodes

  • Lim, Jae-Hong;Park, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.443-446
    • /
    • 2009
  • This study develops a highly transparent ohmic contact scheme using indium oxide doped ZnO (IZO) as a current spreading layer for p-GaN in order to increase the optical output power of nitride-based lightemitting diodes (LEDs). IZO based contact layers of IZO, Ni/IZO, and NiO/IZO were prepared by e-beam evaporation, followed by a post-deposition annealing. The transmittances of the IZO based contact layers were in excess of 80% throughout the visible region of the spectrum. Specific contact resistances of $3.4\times10^{-4}$, $1.2\times10^{-4}$, $9.2\times0^{-5}$, and $3.6\times10^{-5}{\Omega}{\cdot}cm^2$ for IZO, Ni/Au, Ni/IZO, and NiO/IZO, respectively were obtained. The forward voltage and the optical output power of GaN LED with a NiO/IZO ohmic contact was 0.15 V lower and was increased by 38.9%, respectively, at a forward current of 20 mA compared to that of a standard GaN LED with an Ni/Au ohmic contact due to its high transparency, low contact resistance, and uniform current spreading.

Change in Water Contact Angle of Carbon Contaminated TiO2 Surfaces by High-energy Electron Beam

  • Kim, Kwang-Dae;Tai, Wei Sheng;Kim, Young-Dok;Cho, Sang-Jin;Bae, In-Seob;Boo, Jin-Hyo;Lee, Byung-Cheol;Yang, Ki-Ho;Pack, Ok-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1067-1070
    • /
    • 2009
  • We studied change in water contact angle on $TiO_2$ surfaces upon high-energy electron-beam treatment. Depending on conditions of e-beam exposures, surface OH-content could be increased or decreased. In contrast, water contact angle continuously decreased with increasing e-beam exposure and energy, i.e. change in the water contact angle cannot be rationalized in terms of the overall change in the surfacestructure of carbon-contaminated $TiO_2$. In the C 1s spectra, we found that the C-O and C=O contents gradually increased with increasing e-beam energy, suggesting that the change in the surface structure of carbon layers can be important for understanding of the wettability change. Our results imply that the degree of oxidation of carbon impurity layers on oxide surfaces should be considered, in order to fully understand the change in the oxide surface wettability.

Liquid Crystal Alignment on Multi-stacked Layer HfO2 Thin Films Using a Solution-process (용액 공정 기반의 다중 적층된 HfO2 박막 상에서의 액정 배향)

  • Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.821-825
    • /
    • 2013
  • Effect of multi-stacked layer (MSL), 0.1 mol (M) and 0.3 mol (M) hafnium oxide ($HfO_2$) alignment layers were fabricated via a solution-process for LCs orientation. The solutions were spin-coated and annealed in a furnace. MSL consists of three sub-layers using 0.1 M solution, mono-layer (ML) is composed of 0.3 M $HfO_2$ solution. Then ion-beam irradiation was treated with 1.8 keV for 2 min. $HfO_2$-based LC cells were investigated through photographs, pre-tilt angle using crystal rotation method, X-ray photoelectron spectroscopy (XPS) measurement, and surface roughness using atomic force microscopy(AFM) for their characteristic research. Good LC orientation characteristics were observed on MSL $HfO_2$ surface. The LC alignment mechanism on MSL $HfO_2$ and ML $HfO_2$ surfaces was attributed to van der Waals (VDW) interaction between the LC molecular and substrate surface.

Continuous Roll-to-Roll(R2R) sputtering system for growing flexible and transparent conducting oxide electrode at room temperature

  • Park, Yong-Seok;Jeong, Jin-A;Park, Ho-Kyun;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1575-1577
    • /
    • 2009
  • We have investigated the characteristics of transparent indium zinc oxide(IZO)/Ag/IZO multilayer electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible device are described. By the continuous R2R sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, we were able to fabricate an IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ${\Omega}$/square, optical transmittance of 87.4 %, and figure of merit value of 42.03 10-3 ${\Omega}$-1. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the RTR sputter grown single ITO electrode, due to the existence a ductile Ag layer between the IZO layers. This indicates that the RTR sputtered IZO-Ag-IZO multilayer is a promising flexible electrode that can substitute for the conventional single ITO electrode grown by bath type sputtering for use in low cost flexible device, due to its low resistance, high transparency, superior flexibility and fast preparation by the R2R process.

  • PDF

Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells (ZnO 나노 분말 코팅 기반 건식전사 그래핀 전극 제작 및 유기태양전지 응용)

  • Jo, Yeongsu;Woo, Chae Young;Hong, Soon Kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.305-310
    • /
    • 2020
  • In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.

Electrical Properties of poly Si layers embedded in metal-oxide-semiconductor structure by using atomic-layer-deposited alumina layers as blocking oxide (원자층 증착법으로 형성된 $Al_{2}O_{3}$ 층을 이용한 MOS 구조에서 폴리 실리콘 층의 전기적 특성에 관한 연구)

  • Park, Byoung-Jun;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1353-1354
    • /
    • 2007
  • 폴리 실리콘 층의 유무에 따른 금속-옥사이드-반도체(MOS) 구조의 소자를 제작하였다. 터널링 산화막과 블로킹 산화막으로는 $Al_{2}O_{3}$ 층을 증착하였으며, 원자층 증착법을 이용하여 제작하였다. 터널링 산화막 층의 두께에 따른 I-V와 C-V 특성을 측정하였다. 전자들이 폴리 실리콘 층에 저장됨에 따라 N-형의 I-V 특성이 관찰되었다. C-V 측정 시에는 반시계 방향의 히스테리시스 특성을 나타내었으며, 전압이 증가할수록 플랫-밴드 전압 이동 폭이 더욱 증가하였다. 이러한 전기적 특성은 전압의 이동에 따른 전자들이 터널링 산화막 층을 통하여 폴리 실리콘 내부에 저장되기 때문이다. 이를 특성들은 폴리 실리콘의 전하 저장 가능성을 보여주는 것이며, 터널링 산화막 층의 두께에 따른 전기적 특성 변화도 관찰하였다.

  • PDF

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate

  • Behdinan, Kamran;Moradi-Dastjerdi, Rasool
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.593-603
    • /
    • 2022
  • The critical buckling temperature rise of a newly proposed piezoelectrically active sandwich plate (ASP) has been investigated in this work. This structure includes a porous polymeric layer integrated between two piezoelectric nanocomposite layers. The piezoelectric material is made of a passive polymeric material that is activated by lead-free nanowires (NWs) of zinc oxide (ZnO) embedded inside the matrix. In both nanocomposite layers and porous core, functional graded (FG) patterns have been considered for the distributions of ZnO NWs and voids, respectively. By adopting a higher-order theory of plates, the governing equations of thermal buckling are obtained. This set of equations is then treated using an extended mesh-free solution. The effects of plate dimensions, porosity states, and the nanowire parameters have been investigated on the critical buckling temperature rises of the proposed lightweight ASPs with different boundary conditions. The results disclose that the use of porosities in the core and/or mixing ZnO NWs in the face sheets substantially arise the critical buckling temperatures of the newly proposed active sandwich plates.

Analysis of Conductivity Variation and Conduction Mechanism in Bulk NiO Based on Sintering Conditions

  • Ju-Hyeon Lee;Tae-Soo Yeo;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.418-421
    • /
    • 2023
  • Multilayer Ceramic Capacitors (MLCCs) are essential passive components in the electronics industry, known for their high capacitance due to the multilayer structure comprising inner electrodes and dielectric layers. Nickel electrodes are commonly used in MLCCs as the inner electrodes, and to prevent oxidation during the co-firing of the dielectric layers with nickel electrodes, reducing atmosphere is required. However, reducing atmosphere sintering can also induce a reduction of the dielectric, necessitating precise control of oxygen partial pressure. To explore the possibility of using oxide electrodes that do not require reducing atmosphere sintering, we analyze the electrical properties of nickel oxide (NiO) as a potential candidate. As a preliminary study on its use as an alternative inner electrode, the correlation between microstructure and electrical properties of bulk NiO under different sintering conditions was investigated to gain insights into the conduction mechanisms of the material.