• Title/Summary/Keyword: Oxide dispersion strengthened alloy

Search Result 25, Processing Time 0.02 seconds

Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

  • Jung, Yang-Il;Park, Dong-Jun;Park, Jung-Hwan;Kim, Hyun-Gil;Yang, Jae-Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.218-222
    • /
    • 2018
  • An oxide-dispersion-strengthened (ODS) layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide ($Y_2O_3$)-coated Zircaloy-4 tube to induce the penetration of $Y_2O_3$ particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at $380^{\circ}C$, and from 385 to 470 MPa at $500^{\circ}C$. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to $830^{\circ}C$ at a heating rate of $5^{\circ}C/s$ and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties.

Effect of Zone Annealing Velocity on the directional Recrystallization in a Ni base Oxide Dispersion Strengthened Alloys (Ni계 산화물 분산 강화 합금의 방향성 재결정에 미치는 존 어닐링 속도의 영향)

  • Kim, Young-Kyun;Yoon, Seong-June;Park, Jong-Kwan;Kim, Hwi-Jun;Kong, Man-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.331-335
    • /
    • 2018
  • This study investigates the directional recrystallization behavior of Ni based oxide dispersion strengthened (ODS) alloy according to the zone annealing velocity. The zone annealing temperature is set as $1390^{\circ}C$, while the zone velocities are set as 2.5, 4, 6, and 10 cm/h, respectively. The initial microstructure observation of the as-extruded sample shows equiaxed grains of random orientation, with an average grain size of 530 nm. On the other hand, the zone annealed samples show a large deviation in grain size depending on the zone velocities. In particular, grains with a size of several millimeters are observed at 2.5-cm/h zone velocity. It is also found that the preferred orientation varies with the zone annealing velocity. On the basis of these results, this study discusses the role of zone velocities in the directional recrystallization of Ni base ODS alloy.

Effects of Surface Treatment using Oxide-Dispersion-Strengthening on the Mechanical Properties of Zr-based Fuel Cladding Tubes (산화물 분산강화 표면처리에 따른 지르코늄 피복관의 기계적 강도)

  • Jung, Yang-Il;Kim, Il-Hyun;Kim, Hyun-Gil;Jang, Hun;Lee, Seung-Jae
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.271-276
    • /
    • 2019
  • Oxide-dispersion-strengthened (ODS) alloy has been developed to increase the mechanical strength of metallic materials; such an improvement can be realized by distributing fine oxide particles within the material matrix. In this study, the ODS layer was formed in the surface region of Zr-based alloy tubes by laser beam treatment. Two kinds of Zr-based alloys with different alloying elements and microstructures were used: KNF-M (recrystallized) and HANA-6 (partial recrystallized). To form the ODS layer, $Y_2O_3$-coated tubes were scanned by a laser beam, which induced penetration of $Y_2O_3$ particles into the substrates. The thickness of the ODS layer varied from 20 to $55{\mu}m$ depending on the laser beam conditions. A heat affected zone developed below the ODS layer; its thickness was larger in the KNF-M alloy than in the HANA-6 alloy. The ring tensile strengths of the KNF-M and HANA-6 alloy samples increased more than two times and 20-50%, respectively. This procedure was effective to increase the strength while maintaining the ductility in the case of the HANA-6 alloy samples; however, an abrupt brittle facture was observed in the KNF-M alloy samples. It is considered that the initial microstructure of the materials affects the formation of ODS and the mechanical behavior.

Preparation of $TiB_2$ Dispersed Cu Alloy by Spark Plasma Sintering

  • Kim, Kyong-Ju;Lee, Gil-Geun;Park, Ik-Min
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.523-524
    • /
    • 2006
  • The $TiB_2$ dispersion strengthened copper alloy was attracted as thermal and electrical functional material for the high mechanical strength, high thermal stability and good conductivity of $TiB_2$. In the present study, the focus is on the synthesis of $TiB_2$ dispersed copper alloy by spark plasma sintering process using copper oxide and titanium diboride as raw materials. The mechanical, thermal and electrical properties of sintered bodies were discussed with the sintering parameters, and developed microstructure and phase of sintered bodies.

  • PDF

Microstructural Evaluation and High Temperature Mechanical Properties of Ni-22Cr-18Fe-9Mo ODS Alloy (Ni-22Cr-18Fe-9Mo계 ODS 합금의 미세조직 및 고온인장 특성 평가)

  • Jeong, Seok-Hoan;Kang, Suk-Hoon;Han, Chang-Hee;Kim, Tae-Kyu;Kim, Do-Hyang;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.456-462
    • /
    • 2011
  • Yttrium oxide is one of the most thermo-dynamically stable materials, so that it is generally used as a dispersoid in many kinds of dispersion strengthed alloys. In this study, a nickel-base superalloy is strengthened by dispersion of yttrium oxide particles. Elemental powders with the composition of Ni-22Cr-18Fe-9Mo were mechanically alloyed(M.A.) with 0.6 wt% $Y_2O_3$. The MA powders were then HIP(hot isotactic press)ed and hot rolled. Most oxide particles in Ni-22Cr-18Fe-9Mo base ODS alloy were found to be Y-Ti-O type. The oxide particles were uniformly dispersed in the matrix and also on the grain boundaries. Tensile test results show that the yield strength and ultimate tensile strength of ODS alloy specimens were 1.2~1.7 times higher than those of the conventional $Hastelloy^{TM}$ X(R), which has the same chemical compositions with ODS alloy specimens except the oxide particles.

MICROSTRUCTURAL EVOLUTION OF A HIGH CR FE-BASED ODS ALLOY BY DIFFERENT COOLING RATES

  • Shen, Yin-Zhong;Cho, Hae-Dong;Jang, Jin-Sung
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • Through mechanical alloying, hot isostatic pressing and hot rolling, a 9%Cr Fe-based oxide dispersion-strengthened alloy sample was fabricated. The tensile strength of the alloy is significantly improved when the microstructure is modified during the post-consolidation process. The alloy samples were strengthened as the cooling rates increased, though the elongation was somewhat reduced. With a cooling rate of $800^{\circ}C/s$ after normalization at $1150^{\circ}C$, the alloy sample showed a tensile strength of 1450 MPa, which is about twice that of the hot rolled sample; however, at $600^{\circ}C$ the tensile strength dramatically decreased to 620 MPa. Optical microscope and transmission electron microscope were used to investigate the microstructural changes of the specimens. The resultant strengthening of the alloy sample could be mainly attributed to the interstitially dissolved nitrogen, the fraction of the tempered martensite, the fine grain and the presence of a smaller precipitate. The decrease in the tensile strength was mainly caused by the precipitation of vanadium-rich nitride.

TiO2 Thin Film Coating on an Nb-Si-Based Superalloy via Atomic Layer Deposition (원자층 증착법을 통한 Nb-Si계 초내열합금 분말 상의 TiO2 박막 증착 연구)

  • Ji Young Park;Su Min Eun;Jongmin Byun;Byung Joon Choi
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.255-262
    • /
    • 2024
  • Nano-oxide dispersion-strengthened (ODS) superalloys have attracted attention because of their outstanding mechanical reinforcement mechanism. Dispersed oxides increase the material's strength by preventing grain growth and recrystallization, as well as increasing creep resistance. In this research, atomic layer deposition (ALD) was applied to synthesize an ODS alloy. It is useful to coat conformal thin films even on complex matrix shapes, such as nanorods or powders. We coated an Nb-Si-based superalloy with TiO2 thin film by using rotary-reactor type thermal ALD. TiO2 was grown by controlling the deposition recipe, reactor temperature, N2 flow rate, and rotor speed. We could confirm the formation of uniform TiO2 film on the surface of the superalloy. This process was successfully applied to the synthesis of an ODS alloy, which could be a new field of ALD applications.

An Investigation of the Stability of Y2O3 and Sintering Behavior of Fe-Based ODS Particles Prepared by High Energy Ball Milling

  • Park, Eun-Kwang;Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu;Seol, Kyeong-Won
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.275-279
    • /
    • 2013
  • Fe-based oxide dispersion strengthened (ODS) powders were produced by high energy ball milling, followed by spark plasma sintering (SPS) for consolidation. The mixed powders of 84Fe-14Cr-$2Y_2O_3$ (wt%) were mechanically milled for 10 and 90 mins, and then consolidated at different temperatures ($900{\sim}1100^{\circ}C$). Mechanically-Alloyed (MAed) particles were examined by means of cross-sectional images using scanning electron microscopy (SEM). Both mechanical alloying and sintering behavior was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). To confirm the thermal behavior of $Y_2O_3$, a replica method was applied after the SPS process. From the SEM observation, MAed powders milled for 10 min showed a lamella structure consisting of rich regions of Fe and Cr, while both regions were fully alloyed after 90 min. The results of sintering behavior clearly indicate that as the SPS temperature increased, micro-sized defects decreased and the density of consolidated ODS alloys increased. TEM images revealed that precipitates smaller than 50 nm consisted of $YCrO_3$.

Development of a micro-scale Y-Zr-O oxide-dispersion-strengthened steel fabricated via vacuum induction melting and electro-slag remelting

  • Qiu, Guoxing;Zhan, Dongping;Li, Changsheng;Qi, Min;Jiang, Zhouhua;Zhang, Huishu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1589-1595
    • /
    • 2019
  • In this paper, the CLAM steel strengthened by micro-scale Y-Zr-O was prepared by vacuum induction melting followed by electroslag remelting (VIM-ESR). Yttrium (Y) and zirconium (Zr) were easy to aggregates into massive yttrium-zirconium-rich inclusions in the steel melted by vacuum induction melting (VIM), which would interrupt the continuity of the matrix and reduce the mechanical properties of steel. Micron-sized Y-Zr-O inclusions would be produced with the removal of original blocky Y-Zr-rich inclusions and the submicron-sized inclusions smaller than $0.2{\mu}m$ could be retained in the steel. The small grain size and the better refinement and distribution uniformity of Y-Zr-O inclusions after remelting would be responsible for the better yield strength and toughness. For VIM-ESR alloy, the ultimate tensile strength is 749 MPa and the yield strength is 642 MPa at room temperature, meanwhile they are 391 MPa and 367 MPa at $600^{\circ}C$, respectively. Meanwhile, the ductile-brittle transition temperature (DBTT) reduced from $-43^{\circ}C$ (VIM) to $-76^{\circ}C$ (VIM-ESR).

EFFECT OF PROCESS CONTROL AGENT ON THE MICROSTRUCTURE OF Ni-BASED ODS SUPERALLOY PRODUCED BY MECHANICAL ALLOYING AND SINTERING

  • JU-YEON HAN;HYUNJI KANG;SUNG-TAG OH
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.949-952
    • /
    • 2019
  • The effects of different types of process control agents (PCA) on the microstructure evolution of Ni-based oxide dispersion-strengthened superalloy have been investigated. Alloy synthesis was performed on elemental powders having a nominal composition of Ni-15Cr-4.5Al-4W-2.5Ti-2Mo-2Ta-0.15Zr-1.1Y2O3 in wt % using high energy ball milling for 5 h. The prepared powders are consolidated by spark plasma sintering at 1000℃. Results indicated that the powder ball-milled with ethanol as PCA showed large particle size, low carbon content and homogeneous distribution of elemental powders compared with the powder by stearic acid. The sintered alloy prepared by ethanol as PCA exhibited a homogeneous microstructure with fine precipitates at the grain boundaries. The microstructural characteristics have been discussed on the basis of function of the PCA.