• 제목/요약/키워드: Oxide Scale

검색결과 488건 처리시간 0.028초

산소플라즈마 전처리된 Polyethylene Naphthalate 기판 위에 증착된 ZnO:Ga 투명전도막의 특성 (Properties of ZnO:Ga Transparent Conducting Film Fabricated on O2 Plasma-Treated Polyethylene Naphthalate Substrate)

  • 김병국;김정연;오병진;임동건;박재환;우덕현;권순용
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.175-180
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used for optoelectronic applications. Among TCO materials, zinc oxide (ZnO) has been studied extensively for its high optical transmission and electrical conduction. In this study, the effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films (GZO) on polyethylene naphthalate (PEN) substrate were studied. The $O_2$ plasma pretreatment process was used instead of conventional oxide buffer layers. The $O_2$ plasma treatment process has several merits compared with the oxide buffer layer treatment, especially on a mass production scale. In this process, an additional sputtering system for oxide composition is not needed and the plasma treatment process is easily adopted as an in-line process. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PEN substrate and the GZO film, the $O_2$ plasma pre-treatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the contact angle decreased and the RMS surface roughness increased significantly. It is believed that the surface energy and adhesive force of the polymer surfaces increased with the $O_2$ plasma treatment and that the crystallinity and grain size of the GZO films increased. When the RF power was 100W and the treatment time was 120 sec in the $O_2$ plasma pretreatment process, the resistivity of the GZO films on the PEN substrate was $1.05\;{\times}\;10^{-3}{\Omega}-cm$, which is an appropriate range for most optoelectronic applications.

Mill Scale을 이용한 M형 Ferrite의 합성 (Preparation of M Type Hexa-Ferrite Using the Mill Scale)

  • 오영우
    • 한국자기학회지
    • /
    • 제6권4호
    • /
    • pp.204-210
    • /
    • 1996
  • 제철소의 부산물인 mill scale과 $Fe_{2}O_{3}$, 그리고 이들의 혼합물을 사용하여 M형 ferrite를 제조하였다. $Fe_{2}O_{3}$$BaCO_{3}$의 몰비를 5.2~6.0으로 변화시킨 혼합물의 하소 및 소결은 각각 $1150^{\circ}C,\;1250^{\circ}C$에서 2시간 행하였으며, 하소시에 mill scale 중의 불순물 성분인 $SiO_{2},\;Al_{2}O_{3},\;MgO,\;CaO\;및\;Na_{2}O$를 적당량 첨가한 시편으로 자기적 특성과 형상을 조사하였다. $Na_{2}O$를 첨가한 시편은 미반응의 $Fe_{2}O_{3}$와 중간 화합물인 $BaFe_{2}O_{4}$의 영향으로 자기적 특성이 감소하였으나, $BaO.5.6Fe_{2}O_{3}$ 조성에 $SiO_{2}$$Al_{2}O_{3}$의 첨가는 특성의 증진을 보였으며, 특히 $Al_{2}O_{3}$$M_{s}$ 값은 감소시켰으나 $_{B}H_{c}$ 값을 증가시켰다. BM($BaCo_{3}$와 mill scale의 혼합물)과 BFM($BaCO_{3},\;Fe_{2}O_{3}$, mill scale의 혼합물) 소결 시편의 ${(BH)}_{max}$는 각각 0.86, 1.04 MGOe였으며, $440^{\circ}C$ 부근에서 자기 특성의 변화를 보였다.

  • PDF

인 흡착을 위한 Mill Scale 전처리 및 Magnetite 제조 연구 (A Study on the Mill Scale Pretreatment and Magnetite Production for Phosphate Adsorption)

  • 천현철;최영균
    • 대한환경공학회지
    • /
    • 제37권4호
    • /
    • pp.246-252
    • /
    • 2015
  • 철강공장의 열연공정에서 발생하는 폐부산물인 mill scale을 원료로 하여 인흡착에 효율적인 무기흡착제인 magnetite를 생산하고자 하였다. Mill scale의 주요 구성성분은 wustite (FeO), magnetite (FeO), hematite (FeO)였으며, 산처리를 수행할 경우 대부분의 wustite가 magnetite와 hematite로 전환되었다. Mill scale의 산처리는 HCl과 $H_2O_2$를 이용하여, 염기처리는 NaOH 이용하여, 산-염기 복합처리는 $H_2SO_4$와 NaOH를 이용하여 수행하였다. Oil 제거 및 DI water로 rinsing만 한 경우, 인 흡착용량은 0.28 mgP/g으로 나타난 반면, 염기처리를 한 경우 0.68, 산처리를 한 경우 1.19 mgP/g으로 인 흡착용량이 증가하였다. 산-염기 복합처리 과정을 통해 단일상의 magnetite 입자를 얻을 수 있었으며, 이 입자의 인 흡착용량은 3.11 mgP/g 이상인 것으로 파악되었다. 산화철의 인 흡착에 대한 동력학적 특성 분석결과 Freundlich와 Langmuir 두 등온 흡착모델 모두 magnetite의 인 흡착 거동을 잘 모사하였다. Freundlich 모델의 흡착능(K)과 흡착강도(1/n)를 조사한 결과, 온도가 증가할수록 강한 흡착능을 보이는 것으로 나타났다. Langmuir 모델 적용결과 최대 흡착용량은 $20^{\circ}C$에서 5.1 mgP/g인 것으로 파악되었다.

Facile Fabrication of Flexible In-Plane Graphene Micro-Supercapacitor via Flash Reduction

  • Kang, Seok Hun;Kim, In Gyoo;Kim, Bit-Na;Sul, Ji Hwan;Kim, Young Sun;You, In-Kyu
    • ETRI Journal
    • /
    • 제40권2호
    • /
    • pp.275-282
    • /
    • 2018
  • Flash reduction of graphene oxide is an efficient method for producing high quality reduced graphene oxide under room temperature ambient conditions without the use of hazardous reducing agents (such as hydrazine and hydrogen iodide). The entire process is fast, low-cost, and suitable for large-scale fabrication, which makes it an attractive process for industrial manufacturing. Herein, we present a simple fabrication method for a flexible in-plane graphene micro-supercapacitor using flash light irradiation. All carbon-based, monolithic supercapacitors with in-plane geometry can be fabricated with simple flash irradiation, which occurs in only a few milliseconds. The thinness of the fabricated device makes it highly flexible and thus useful for a variety of applications, including portable and wearable electronics. The rapid flash reduction process creates a porous graphene structure with high surface area and good electrical conductivity, which ultimately results in high specific capacitance ($36.90mF\;cm^{-2}$) and good cyclic stability up to 8,000 cycles.

Fabrication and Thermal Oxidation of ZnO Nanofibers Prepared via Electrospinning Technique

  • Baek, Jeong-Ha;Park, Ju-Yun;Kang, Ji-Soo;Kim, Don;Koh, Sung-Wi;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2694-2698
    • /
    • 2012
  • Materials on the scale of nanoscale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nanofibers using the electrospinning method for potential uses of solar cells and sensors. After ZnO nanofibers were obtained, calcination temperature effects on the ZnO nanofibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nanofibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nanofibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nanofibers. These techniques have helped us deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nanofibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised.

Engineering and Economic Evaluation of Production of MgO Nanoparticles using a Physicochemical Method

  • Priatna, Deri;Nandiyanto, Asep Bayu Dani
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.26-33
    • /
    • 2019
  • We conducted research to evaluate economically and engineering about the synthesis of Magnesium Oxide, MgO, nanoparticles using physicochemical methods. The method used was economic evaluation by calculating GPM, BEP, PBP, and CNPV. The other method used was engineering perspective. MgO nanoparticles were synthesized by reacting Mg(NO3)2 and NaOH with a mole ratio 1: 2. Mg(OH)2 formed was heated and calcined to remove water content and to oxidation to form MgO. An economic evaluation by calculating GPM and CNPV for the production of MgO nanoparticles on an industrial scale shows that the payback period (PBP) occur in the third year and profits increase each year. Tax variations show that the higher of tax, the lower profits received. When there was an increase of selling prices, the profit was greater. The variable cost used is the price of raw material. When there was an increased in the variable cost price, the payback period was longer and the profits was reduced. The benefit of this research is knowing the industrial production of MgO nanoparticles is beneficial. The function of MgO nanoparticles is a material for the manufacture of ceramics and can be used as an antimicrobial in the water filtration process.

산화티타늄피막의 광 전기분해 특성에 대한 연구 (A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films)

  • 박성용;조원일;조병원;이응조;윤경석
    • 한국수소및신에너지학회논문집
    • /
    • 제2권1호
    • /
    • pp.47-56
    • /
    • 1990
  • Pure titanium rods were oxidized by anodic oxidation, furnace oxidation and flame oxidation and used as a electrode in the photodecomposition of water. The maximum photoelectrochemical conversion efficiency(${\eta}$) was found for flame oxidized electrode ($1200^{\circ}C$ for 2 min in air), 0.8 %. Anodically oxidized electrodes have minimum photoelectrochemical conversion efficiencies, 0.3 %. Furnace oxidized electrode ($800^{\circ}C$ for 10min in air) has 0.5% phtoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The efficiency shows a parallelism with the presence of the metallic interstitial compound $TiO_{O+X}$(X < 0.33) at the metal-semiconductor interface, the thickness of the sub oxide layer and that of the external rutile scale.

  • PDF

인가 전압에 따른 양극산화된 금속 산화물의 나노 구조 변화와 전기변색 응용 (Effects of applied voltages on nano-structures of anodized metal oixdes and their electrochromic applications)

  • 김태호;이재욱;김병성;전형진;나윤채
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.115.1-115.1
    • /
    • 2016
  • Electrochemical anodization has been interested due to its useful way for the nano-scale architecture of metal oxides obtained from a metal substrate. By using this method, it is easy to control the morphology of the oxide materials by controlling electrochemical conditions. Among oxide materials obtained from the transition metals such as Ti, V, W, etc., in this paper, the morphological study of anodized $TiO_2$ was employed at various voltage conditions in fluoric based electrolyte, and the effects of applied voltage (sweep rate and retention time) on the tube morphologies were investigated. Furthermore, by using anodization of tungsten substrate (W), we fabricated the porous structure of $WO_3$ and provided merits of tailored structure for the hybridization of inorganic and organic materials as electrochromic (EC) applications. The hybrid porous $WO_3$ shows multi-chromic properties during the EC reactions at specific voltage conditions. From these results, the anodization process with tailoring nano-structure is one of the promising methods for EC applications.

  • PDF

Integrated Circuit Design Based on Carbon Nanotube Field Effect Transistor

  • Kim, Yong-Bin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권5호
    • /
    • pp.175-188
    • /
    • 2011
  • As complementary metal-oxide semiconductor (CMOS) continues to scale down deeper into the nanoscale, various device non-idealities cause the I-V characteristics to be substantially different from well-tempered metal-oxide semiconductor field-effect transistors (MOSFETs). The last few years witnessed a dramatic increase in nanotechnology research, especially the nanoelectronics. These technologies vary in their maturity. Carbon nanotubes (CNTs) are at the forefront of these new materials because of the unique mechanical and electronic properties. CNTFET is the most promising technology to extend or complement traditional silicon technology due to three reasons: first, the operation principle and the device structure are similar to CMOS devices and it is possible to reuse the established CMOS design infrastructure. Second, it is also possible to reuse CMOS fabrication process. And the most important reason is that CNTFET has the best experimentally demonstrated device current carrying ability to date. This paper discusses and reviewsthe feasibility of the CNTFET's application at this point of time in integrated circuits design by investigating different types of circuit blocks considering the advantages that the CNTFETs offer.

확장성을 고려한 QCA XOR 게이트 설계 (Design of Extendable XOR Gate Using Quantum-Dot Cellular Automata)

  • 유영원;김기원;전준철
    • 한국항행학회논문지
    • /
    • 제20권6호
    • /
    • pp.631-637
    • /
    • 2016
  • CMOS (complementary metal-oxide-semiconductor)의 소형화에 대한 한계를 극복할 수 있는 대체 기술 중 하나인 양자 셀룰라 오토마타 (QCA; quantum cellular automata)는 나노 단위의 셀들로 이루어져 있고, 전력의 소모량이 매우 적은 것이 특징이다. QCA를 이용한 다양한 회로들이 연구되고 있고, 그 중에서 XOR (exclusive-OR)게이트는 오류 검사 및 복구에 유용하게 사용되고 있다. 기존의 XOR 논리 게이트는 확장성이 부족하고, 클럭 구간의 수가 많이 소요되며, 실제 구현에 어려움이 있는 경우가 많다. 이러한 단점을 극복하기 위해 클럭 구간의 수를 단축한 다수결 게이트를 이용한 XOR 논리 게이트를 제안한다. 제안한 회로는 기존의 XOR 논리 게이트들과 비교 분석하고 그 성능을 검증한다.