• Title/Summary/Keyword: Oxide Fuel

Search Result 1,147, Processing Time 0.022 seconds

Overview on Ceramic and Nanostructured Materials for Solid Oxide Fuel Cells (SOFCs) Working at Different Temperatures

  • Priya, S. Dharani;Selvakumar, A. Immanuel;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.99-116
    • /
    • 2020
  • The article provides information on ceramic / nanostructured materials which are suitable for solid oxide fuel cells (SOFCs) working between 500 to 1000℃. However, low temperature solid oxide fuel cells LTSOFCs working at less than 600℃ are being developed now-a-days with suitable new materials and are globally explored as the "future energy conversion devices". The LTSOFCs device has emerged as a novel technology especially for stationary power generation, portable and transportation applications. Operating SOFC at low temperature (i.e. < 600℃) with higher efficiency is a bigger challenge for the scientific community since in low temperature regions, the efficiency might be less and the components might have exhibited lower catalytic activity which may result in poor cell performance. Employing new and novel nanoscale ceramic materials and composites may improve the SOFC performance at low temperature ranges is most focused now-a-days. This review article focuses on the overview of various ceramic and nanostructured materials and components applicable for SOFC devices reported by different researchers across the globe. More importance is given for the nanostructured materials and components developed for LTSOFC technology so far.

Ceramic Green Sheet and Sintering Properties on Solvent Mixture Rate of Electrolyte for Solid Oxide Fuel Cells Fabrication (유기 용매 혼합비에 따른 고체산화물 연료전지 전해질 지지체용 세라믹 그린 시트성형 및 소결 특성)

  • Moon, Bong-Hwa;Lee, Kyung-Min;Lim, Kyoung-Tae;Lee, Chung-Hwan;Lee, Heun-Young;Yoon, Jung-Rag
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.426-430
    • /
    • 2012
  • The properties of green sheet were investigated in order to understanding an effects of organic solvent mixture ratio for solid oxide fuel cells fabrication. The purpose of this work is to optimize the slurry condition using the design of experiment to improve green sheet properties. The elongation increased with increasing amount of binder and solvent. With increasing amount of solvent, the air permeability increased but the tensile strength decreased. The best properties of the green sheet appeared amount of the binder 17 wt%, solvent 35 wt% and powder 48 wt%. The optimum condition of green and sintered density for solid oxide fuel cells fabrication was obtained in the sample pressured at 800 $kgf/cm^2$.

Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성)

  • Song Rak-Hyun;Song Keun-Suk
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

Lanthanum Nickelates with a Perovskite Structure as Protective Coatings on Metallic Interconnects for Solid Oxide Fuel Cells

  • Waluyo, Nurhadi S.;Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • An interconnect is the key component of solid oxide fuel cells that electrically connects unit cells and separates fuel from oxidant in the adjoining cells. To improve their surface stability in high-temperature oxidizing environments, metallic interconnects are usually coated with conductive oxides. In this study, lanthanum nickelates ($LaNiO_3$) with a perovskite structure are synthesized and applied as protective coatings on a metallic interconnect (Crofer 22 APU). The partial substitution of Co, Cu, and Fe for Ni improves electrical conductivity as well as thermal expansion match with the Crofer interconnect. The protective perovskite layers are fabricated on the interconnects by a slurry coating process combined with optimized heat-treatment. The perovskite-coated interconnects show area-specific resistances as low as $16.5-37.5m{\Omega}{\cdot}cm^2$ at $800^{\circ}C$.

Electrochemical Performance and Cr Tolerance in a La1-xBaxCo0.9Fe0.1O3-δ (x = 0.3, 0.4 and 0.5) Cathode for Solid Oxide Fuel Cells

  • Choe, Yeong-Ju;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.308-314
    • /
    • 2015
  • The electrochemical performance and Cr poisoning behavior of $La_{1-x}Ba_xCo_{0.9}Fe_{0.1}O_{3-{\delta}}$ (LBCF, x = 0.3, 0.4, 0.5) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathodes were investigated for solid oxide fuel cells (SOFCs). The polarization resistance of the LBCF/GDC/LBCF symmetrical cell was found to decrease with increasing Ba content (x value). This phenomenon might be associated with the high oxygen vacancy concentration in the LBCF sample, with x = 0.5. In addition, there was no chromium poisoning in the LBCF cathode. On the other hand, the polarization resistance of the LSCF cathode was found to significantly increase after exposure to gaseous chromium species; it appears that this result stemmed from the formation of $SrCrO_4$ phase. Therefore, it can be expected that LBCF can be a durable potential cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFC).

Application of Atomic Layer Deposition to Electrodes in Solid Oxide Fuel Cells

  • Kim, Eui-Hyeon;Hwang, Heui-Soo;Ko, Myeong-Hee;Bae, Seung-Muk;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.319.1-319.1
    • /
    • 2013
  • Solid oxide fuel cells (SOFCs) have been recognized as one of emerging renewable energy sources, due to minimized pollutant production and high efficiency in operation. The performance of SOFCs is largely dependent on the electrode polarization which involves the oxidation/reduction in cathodes and anodes along with the charge transport of ions and electronic carriers. Atomic layer deposition is based on the alternate chemical surface reaction occurring at low temperatures with high uniformity and superior step coverage. Such features can be extended into the coating of metal oxide and/or metal layer onto the porous materials. In particular, the atomic layer deposition is can manipulated in controlling the charge transport in terms of triple phase boundaries, in order to control artificially the electrochemical polarization in electrodes of SOFC. The current work applied atomic layer deposition of metal oxides intro the electrodes of SOFCs. The corresponding effect was monitored in terms of the electrochemical characterization. The roles of atomic layer deposition in solid oxide fuel cells are discussed towards optimized towards long-term durability at intermediate temperature.

  • PDF

Characteristics of Reduced Metal from Spent Oxide Fuel by Lithium

  • Kim Ik-Soo;Seo Chung-Seok;Shin Hee-Sung;Hwang Yong-Soo;Park Seong-Won
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.309-317
    • /
    • 2003
  • The mass balance of the unit processes of the Advanced spent fuel Conditioning Process was calculated to obtain basic information. Based on this mass balance, the changes in decay heat and radioactivity of the spent fuel due to the metallization in the high temperature molten salt system were estimated. The decay heat and the radioactivity were calculated by using the ORIGEN2 computer code, and the result showed that the decay heat and the radioactivity of the metallized spent fuel ingot were $24.27\%\;and\;24.24\%$, respectively, compared to those of oxide spent fuel.

A REVIEW OF INHERENT SAFETY CHARACTERISTICS OF METAL ALLOY SODIUM-COOLED FAST REACTOR FUEL AGAINST POSTULATED ACCIDENTS

  • SOFU, TANJU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.227-239
    • /
    • 2015
  • The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, doublefault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel-coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

Influence of Gas Turbine Performance and Fuel Cell Power Share on the Performance of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems (가스터빈의 성능과 연료전지의 출력비중이 고체산화물 연료전지/가스터빈 하이브리드 시스템 성능에 미치는 영향)

  • Ahn, Ji-Ho;Kang, Soo-Young;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.439-447
    • /
    • 2012
  • Solid oxide fuel cell/gas turbine hybrid systems that use three gas turbines having different power outputs were devised and their performance was compared. The power shares of the gas turbine and fuel cell and the net system efficiency were compared among the three systems, and their variations with the design fuel cell temperature were investigated. The system efficiency was predicted to be insensitive to the fuel cell temperature in the sub-MW system, but it increased with increasing fuel cell temperature in both the multi-MW and hundred-MW systems. The influence of air bypass around the fuel cell on the system performance was also investigated.

Performance Prediction Model of Solid Oxide Fuel Cell Stack Using Deep Neural Network Technique (심층 신경망 기법을 이용한 고체 산화물 연료전지 스택의 성능 예측 모델)

  • LEE, JAEYOON;PINEDA, ISRAEL TORRES;GIAP, VAN-TIEN;LEE, DONGKEUN;KIM, YOUNG SANG;AHN, KOOK YOUNG;LEE, YOUNG DUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.436-443
    • /
    • 2020
  • The performance prediction model of a solid oxide fuel cell stack has been developed using deep neural network technique, one of the machine learning methods. The machine learning has been received much interest in various fields, including energy system mo- deling. Using machine learning technique can save time and cost requried in developing an energy system model being compared to the conventional method, that is a combination of a mathematical modeling and an experimental validation. Results reveal that the mean average percent error, root mean square error, and coefficient of determination (R2) range 1.7515, 0.1342, 0.8597, repectively, in maximum. To improve the predictability of the model, the pre-processing is effective and interpolative machine learning and application is more accurate than the extrapolative cases.