DOI QR코드

DOI QR Code

Overview on Ceramic and Nanostructured Materials for Solid Oxide Fuel Cells (SOFCs) Working at Different Temperatures

  • Priya, S. Dharani (Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University)) ;
  • Selvakumar, A. Immanuel (Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences (Deemed to be University)) ;
  • Nesaraj, A. Samson (Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University))
  • Received : 2019.11.04
  • Accepted : 2020.02.19
  • Published : 2020.05.31

Abstract

The article provides information on ceramic / nanostructured materials which are suitable for solid oxide fuel cells (SOFCs) working between 500 to 1000℃. However, low temperature solid oxide fuel cells LTSOFCs working at less than 600℃ are being developed now-a-days with suitable new materials and are globally explored as the "future energy conversion devices". The LTSOFCs device has emerged as a novel technology especially for stationary power generation, portable and transportation applications. Operating SOFC at low temperature (i.e. < 600℃) with higher efficiency is a bigger challenge for the scientific community since in low temperature regions, the efficiency might be less and the components might have exhibited lower catalytic activity which may result in poor cell performance. Employing new and novel nanoscale ceramic materials and composites may improve the SOFC performance at low temperature ranges is most focused now-a-days. This review article focuses on the overview of various ceramic and nanostructured materials and components applicable for SOFC devices reported by different researchers across the globe. More importance is given for the nanostructured materials and components developed for LTSOFC technology so far.

Keywords

References

  1. I. Garbayo, V. Esposito, S. Sanna, A. Morata, D. Pla, L. Fonseca and N. Sabate, J. Power Sources, 2014, 248, 1042-1049. https://doi.org/10.1016/j.jpowsour.2013.10.038
  2. G. Acres, J. Power Sources, 2001, 100, 60-66. https://doi.org/10.1016/S0378-7753(01)00883-7
  3. A.B. Stambouli, E. Traversa, Renew. Sustain Energy Rev., 2002, 6, 433-455. https://doi.org/10.1016/S1364-0321(02)00014-X
  4. B. Zhu, L. Fan, P. Lund, App. Energy, 2013, 106, 163-175. https://doi.org/10.1016/j.apenergy.2013.01.014
  5. M. Irshad, K. Siraj, R. Raza, A. Ali, P. Tiwari, B. Zhu, A. Rafique, A. Ali, M. K. Ullah, A. Usman, Appl. Sci., 2016, 6, 75(1-23). https://doi.org/10.3390/app6030075
  6. D. J.L. Brett, A. Atkinson, N. P. Brandon, S. J. Skinner, Chem. Soc. Rev., 2008, 37, 1568-1578. https://doi.org/10.1039/b612060c
  7. S.C. Singhal, Solid State Ionics, 2000, 135, 305-313. https://doi.org/10.1016/S0167-2738(00)00452-5
  8. R. M. Ormerod, Chem. Soc. Rev., 2002, 32, 17-28. https://doi.org/10.1039/b105764m
  9. M.H. Zhou, A.Ahmad, Sens. Actuators, 2008, B129, 285-291.
  10. Y. Liu, X. Qin, H. Xin, C. Song, J. Eur. Ceram. Soc., 2013, 33, 2625-2631. https://doi.org/10.1016/j.jeurceramsoc.2013.04.029
  11. K. Boobalan, A. Varun, R. Vijayaraghavan, K. Chidambaram, U. Kamachi Mudali, Ceram. Int., 2014, 40, 5781-5786. https://doi.org/10.1016/j.ceramint.2013.11.017
  12. S. Futamura, A. Muramoto, Y. Tachikawa, J. Matsuda, S. M. Lyth, Y. Shiratori, S. Taniguchi, K. Sasaki, Int. J. Hydrog. Energy, 2019, 44(6), 8502-8518. https://doi.org/10.1016/j.ijhydene.2019.01.223
  13. T. Matsui, T. Kosaka, M. Inaba, A. Mineshige, Z. Ogumi, Solid State Ionics, 2005, 176(7), 663-668. https://doi.org/10.1016/j.ssi.2004.10.010
  14. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah, Beilstein J. Nanotechnol., 2018, 9, 1050-1074. https://doi.org/10.3762/bjnano.9.98
  15. Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, S. A. Barnett, Energy Environ. Sci., 2016, 9, 1602-1644. https://doi.org/10.1039/C5EE03858H
  16. Y. Meng, J. Gao, Z. Zhao, J. Amoroso, J. Tong, K. S. Brinkman, J. Mater. Sci., 2019, 54(13), 9291-9312. https://doi.org/10.1007/s10853-019-03559-9
  17. S.P. S. Shaikh, A. Muchtar, M. R. Somalu, Renew. Sustain. Energy Rev., 2015, 51, 1-8. https://doi.org/10.1016/j.rser.2015.05.069
  18. X. Xin, L. Liu, Y. Liu, Q. Zhu, Int. J. Hydrogen Energy, 2018, 43, 23036-23040. https://doi.org/10.1016/j.ijhydene.2018.10.159
  19. E. A. R. Assirey, Saudi Pharmaceutical Journal, 2019, 27(16), pp. 817-829. https://doi.org/10.1016/j.jsps.2019.05.003
  20. K. Z. Fund, Advanced materials for high temperature solid oxide fuel cells (SOFCs), in: P.K. Shen, C.Y. Wang, S. P. Jiang, X. Sun, J. Zhand (Eds.), Electrochemical Energy: Advanced Materials and Technologies, CRC Press, 2015, pp. 295-305.
  21. B.C.H. Steele, Solid State Ionics, 2000, 134(1-2), 3-20. https://doi.org/10.1016/S0167-2738(00)00709-8
  22. W. H. Kan, A. J. Samson, V. Thangadurai, J. Mater. Chem. A, 2016, 4, 17913-17932. https://doi.org/10.1039/C6TA06757C
  23. Z. Du, H. Zhao, Y. Shen, L. Wang, M. Fang, K. Swierczek, K. Zheng, J. Mater. Chem. A, 2014, 2, 10290-10299. https://doi.org/10.1039/C4TA00658E
  24. A. Kostopoulou, E. Kymakis , E. Stratakis, J. Mater. Chem. A, 2018, 6, 9765-9798. https://doi.org/10.1039/C8TA01964A
  25. W. Zhou, Z. Shao, R. Ran, W. Jin, N. Xu, Chem.Commun., 2008, 44, 5791-5793.
  26. F. Jin, H. Xu, W. Long, Y. Shen, T. He, J. Power Sources, 2013, 243, 10-18. https://doi.org/10.1016/j.jpowsour.2013.05.187
  27. G. Abbas, M. A. Ahmad, R. Raza, M.H. Aziz, M. A. Khan, F. Hussain, T.A. Sherazi, Mat. Lett., 2019, 238, 179-182. https://doi.org/10.1016/j.matlet.2018.11.174
  28. S. Afroze, A.H. Karim, Q. Cheok, S. Eriksson, A.K. Azad, Front. Energy, 2019, 13, 770-797. https://doi.org/10.1007/s11708-019-0651-x
  29. F. Wang, D. Chen, Zongping Shao, J. Power Sources, 2012, 216, 208-215. https://doi.org/10.1016/j.jpowsour.2012.05.068
  30. Y.T. Kim, N. Shikazono, Solid State Ionics, 2017, 309, 77-85. https://doi.org/10.1016/j.ssi.2017.07.010
  31. Y. Ling, L.Zhao, B.Lin, Y. Dong, X. Zhang, G. Meng, X. Liu, Int. J. Hydrogen Energy, 2010, 35, 6905-6910. https://doi.org/10.1016/j.ijhydene.2010.04.021
  32. X. Hu, M. Li, Y. Xie, Y. Yang, X. Wu, C. Xia, ACS Appl. Mater. Interfaces, 2019, 11, 21593-21602. https://doi.org/10.1021/acsami.9b05445
  33. S. Mulmi, V. Thangadurai, Chem. Commun., 2019, 55, 3713-3716. https://doi.org/10.1039/C9CC01054H
  34. S. Ryu, S. Lee, W. Jeong, A. Pandiyan, S.B.K. Moorthy, I. Chang, T. Park, S.W. Cha, Surf. Coatings Tech., 2019, 369, 265-268. https://doi.org/10.1016/j.surfcoat.2019.01.034
  35. I.D. Aburto, F. Gracia, M.C.Lagrille, Fuel Cells, 2019, 19, 147-159. https://doi.org/10.1002/fuce.201800160
  36. L. Li, H. Yang, Z. Gao, Y. Zhang, F. Dong, G. Yang, M. Ni, Z. Lin, J. Mater. Chem. A., 2019, 7, 12343-12349. https://doi.org/10.1039/C9TA02548K
  37. X. Ding, X. Kong, H.Wu, Y. Zhu, J. Tang, Y. Zhong, Int. J. Hydrogen Energy, 2012, 37, 2546-2551. https://doi.org/10.1016/j.ijhydene.2011.10.080
  38. S. Lu, X. Meng, Y. Ji, C. Fu, C. Sun, H. Zhao, J. Power Sources, 2010, 195, 8094-8096. https://doi.org/10.1016/j.jpowsour.2010.06.061
  39. N. Zhou,Y. M. Yin, J. Li, L. Xu, Z.F. Ma, J. Power Sources, 2017, 340, 373-379. https://doi.org/10.1016/j.jpowsour.2016.11.088
  40. S. S. Hashim, F. Liang, W. Zhou, J. Sunarso, Chem.Electrochem., 2019, 6, 3549-3569.
  41. T. Chen, S. Pang X. Shen, X. Jiang, W. Wang, RSC Adv., 2016, 6, 13829-13836. https://doi.org/10.1039/C5RA19555A
  42. S. Yoo, J.Y. Shin, G. Kim, J. Electrochem. Soc., 2011, 158, B632-B638. https://doi.org/10.1149/1.3571008
  43. Z. Zhu, C. Zhou, W. Zhou, N.Yang, Materials, 2019, 12, 777 (1-11). https://doi.org/10.3390/ma12050777
  44. G. Abbas, R. Raza, M. Ashfaq, M. A.Chaudhry, A. Khan, I. Ahmad, B. Zhu, Int. J. Energy Res., 2014, 38, 518?523. https://doi.org/10.1002/er.3090
  45. M. Rafique, H. Nawaz, M.S. Rafique, M.B. Tahir, G. Nabi, N.R. Khalid, Int. J. Energy Res., 2019, 43, 2423-2446. https://doi.org/10.1002/er.4210
  46. A. Faes, A.H. Wyser, A. Zryd, J. Van herle, Membranes, 2012, 2, 585-664. https://doi.org/10.3390/membranes2030585
  47. X. Dong, S. Ma, K. Huang, F. Chen, Int. J. Hydrogen Energy, 2012, 37, 10866-10873. https://doi.org/10.1016/j.ijhydene.2012.04.112
  48. S. Tao, J.T.S. Irvine, Chem. Rec., 2004, 4, 83-95. https://doi.org/10.1002/tcr.20003
  49. S. Futamura, Y. Tachikawa, J. Matsuda, S.M. Lyth, Y. Shiratori, S. Taniquchi, K. Sasaki, ECS Trans., 2017, 78, 1179-1187. https://doi.org/10.1149/07801.1179ecst
  50. E.K. Park, J.W. Yun, J. Electrochem. Sci. Technol., 2016, 7, 33-40. https://doi.org/10.33961/JECST.2016.7.1.33
  51. A.M. Hussain, K.J. Pan, Y. L. Huang, I.A. Robinson, C. Gore, E.D. Wachsman, ACS Appl. Mater. Interfaces, 2018, 10, 36075-36081. https://doi.org/10.1021/acsami.8b07987
  52. A. Sinha, D. N. Miller, J.T.S. Irvine, J. Mater. Chem., 2016, 4, 11117-11123. https://doi.org/10.1039/C6TA03404G
  53. E. Lay, G. Gauthier, S. Rosini, C. Savaniu, J.T.S. Irvine, Solid State Ionics, 2008, 179, 27-32.
  54. K. Yamamoto, T. Hashishin, M. Matsuda, N. Qiu, Z. Tan, S. Ohara, Nanoenergy, 2014, 6, 103-108.
  55. P. Blennow, K. K. Hansen, L. R. Wallenberg, M. Mogensen, ECS Trans., 2008, 13, 181-194.
  56. G. Abbas, R. Raza, M. A. Khan, I. Ahmad, M.A. Chaudhry, T. A. Sherazi, M. Mohsin, M. Ahmad, B. Zhu, Int. J. Hydrogen Energy, 2015, 40, 891-897. https://doi.org/10.1016/j.ijhydene.2014.10.119
  57. X. Dong, Ceramic-Based Anodes for Solid Oxide Fuel Cells (Doctoral dissertation), University of South Carolina, 2012.
  58. C. Fu, S. H. Chan, Q. Liu, X. Ge, G Pasciak, Int. J. Hydrogen Energy, 2010, 35, 301-307. https://doi.org/10.1016/j.ijhydene.2009.09.101
  59. R. Razaa, X.Wang, Y. Ma, B, Zhu, J. Power Sources, 2010, 195, 8067-8070. https://doi.org/10.1016/j.jpowsour.2010.07.044
  60. G. Abbas, M. A. Chaudhry, R. Raza, M. Singh, Q. Liu, H. Qin, B. Zhu, Nanosci. Nanotechn. Let., 2012, 4, 389-393. https://doi.org/10.1166/nnl.2012.1306
  61. G. Dong, C.Yang, F. He, Y. Jiang, C. Ren, Y.Gan, M. Lee, X. Xue, RSC Advances, 2017, 7, 22649-22661. https://doi.org/10.1039/C7RA03143B
  62. L. Fan, B. Zhu, P.C. Su, C. He, Nano Energy, 2017, 45, 148-176. https://doi.org/10.1016/j.nanoen.2017.12.044
  63. J. Ding, J. Liu, W. Guo, J. Alloys Compd., 2009, 480, 286-290. https://doi.org/10.1016/j.jallcom.2009.02.111
  64. G. Xiao, S. Wang, Y. Lin, Z. Yang, M. Han, F. Chena, J. Electrochem. Soc., 2014, 161, 305-310.
  65. N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Prog. Mater. Sci., 2015, 72, 141-337. https://doi.org/10.1016/j.pmatsci.2015.01.001
  66. P. Koteswararao, M. B. Suresh, B. N. Wani, P. V. B. Rao, P. Varalakshimi, Int J Sci Res Sci Eng Technol, 2017, 3, 342-346.
  67. C.C.T. Yang, W.C.J. Wei, J. Am. Ceram. Soc., 2004, 87, 1110-1116. https://doi.org/10.1111/j.1551-2916.2004.01110.x
  68. T.L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K.Kato, A. Negishi, K. Nozaki, F. Tappero, K. Sasaki, H. Shirahama, K. Ota, M. Dokiya, T. Kato, Solid State Ionics, 2004, 174, 163-174. https://doi.org/10.1016/j.ssi.2004.06.017
  69. S.I. Ahmad, Int. J. Nano Rech., 2018, 1, 11-13.
  70. A. A. Yaremchenko, V. V. Kharton, E. N. Naumovich, A. A. Vecher, J. Solid State Electrochem., 1998, 2, 146-149. https://doi.org/10.1007/s100080050079
  71. T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem Soc., 1994, 116, 801-803. https://doi.org/10.1021/ja00081a064
  72. T. Ishihara, J. Yan, H. Matsumoto, ECS Trans., 2007, 7, 435-442.
  73. P Koteswararao, B.M. Suresh, B.N. Wani, P.V.B.Rao, J. Powder Metall. Min., 2017, 6, 1-4.
  74. N. Singh, O. Parkash, D. Kumar, Ionics, 2013, 19, 165-171. https://doi.org/10.1007/s11581-012-0698-8
  75. Z. Gao, R. Raza, B. Zhu, Z. Mao, C. Wang, Z. Liu, Int. J. Hydrogen Energy, 2011, 36, 3984-3988. https://doi.org/10.1016/j.ijhydene.2010.12.061
  76. M. S. Arshad, R. Raza, M. A. Ahmad, G. Abbas, A. Ali, A. Rafique, M. K. Ullah, S. Rauf, M. I. Asghar, N. Mushtaq, S. Atiq, S. Naseem, Ceram. Int., 2018, 44, 170-174. https://doi.org/10.1016/j.ceramint.2017.09.155
  77. K. Kannan, D. Radhika, A. S. Nesaraj, M. W. Ahmed, R. Namita, Mater. Res. Innov., 2019.
  78. Y. J. Jin, Z. G. Liu, Z.Y. Ding, G. Cao, A. Henniche, H. B. Zhang, X.Y. Zhen, J. H. Ouyang, ElectrochimActa, 2018, 283, 291-299. https://doi.org/10.1016/j.electacta.2018.06.171
  79. C. Xia, Y. Cai, B. Wang, M. Afzal, W. Zhang, A. Soltaninazarlou, B. Zhu, J. Power Sources, 2017, 342, 779-786. https://doi.org/10.1016/j.jpowsour.2016.12.120
  80. S. V. Fedorov, M. S. Sedov, V. V. Belousov, ACS Appl. Energy, 2019, 29, 6860-6865.
  81. E. D. Wachsman, K.T. Lee, Science, 2011, 334, 935-939. https://doi.org/10.1126/science.1204090
  82. S. Yin, Y. Zeng, C. Li, X. Chen, Z. Ye, ACS Appl. Mater. Interfaces, 2013, 5, 12876-12886. https://doi.org/10.1021/am403198x
  83. Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao, Z. Zhu, Adv.Mater, 2017, 29, 1700132. https://doi.org/10.1002/adma.201700132
  84. N. K. Singh, P. Singh, D. Kumar, O. Parkash, Ionics, 2012, 18, 127-134. https://doi.org/10.1007/s11581-011-0604-9
  85. Z. Gong, W. Sun, J. Cao, D. Shan, Y. Wu, W. Liu, Electrochim. Acta, 2017, 228, 226-232. https://doi.org/10.1016/j.electacta.2017.01.065
  86. N. Singh, N. K. Singh, D. Kumar, O. Parkash, J. Alloy Compd., 2012, 519, 129-135. https://doi.org/10.1016/j.jallcom.2011.12.137
  87. K. Tanwar, N. Jaiswal, D. Kumar, O. Parkash, J. Alloy Compd., 2016, 684, 683-690. https://doi.org/10.1016/j.jallcom.2016.05.223
  88. F. Liu, J. Dang, J. Hou, J. Qian, Z. Zhu, Z. Wang, W. Liu, J. Alloy Compd., 2015, 639, 252-258. https://doi.org/10.1016/j.jallcom.2015.03.165
  89. N. Radenahmad, A. Afif, J. I. Lee, M. Saqib, J.Y. Park, J. Zaini, A. K. Azad, ECS Trans., 2019, 97, 1.
  90. Y. Cui, R. Shi, J. Liu, H. Wang, H. Li, Materials (Basel), 2018, 11, 1824 (1-10). https://doi.org/10.3390/ma11101824
  91. C. Sun, R. Hui, J. Roller, J. Solid State Electrochem., 2010, 14, 1125-1144. https://doi.org/10.1007/s10008-009-0932-0
  92. W. Kong, M. Zhang, Z. Han, Q. Zhang, Appl. Sci., 2019, 9, 493 (2-11). https://doi.org/10.3390/app9030493
  93. R. O'Hayre, D. M. Barnett, F. B. Prinz, J. Electrochem. Soc., 2005, 2, A439-A444.
  94. P.S. Jorgensen, S.L. Ebbehoj, A. Hauch, J. Power Sources, 2015, 279, 686-693. https://doi.org/10.1016/j.jpowsour.2015.01.054
  95. R. Ebrahim, M. Yeleuov, A. Issova, S. Tokmoldin, A. Ignatiev, Nanoscale Res. Lett., 2014, 9, 286 (1-5). https://doi.org/10.1186/1556-276X-9-286
  96. V. M. Janardhanan, V. Heuveline, O. Deutschmann, J. Power Sources, 2008, 178, 368-372. https://doi.org/10.1016/j.jpowsour.2007.11.083
  97. X. Lu, T.M.M. Heenan, J.J. Bailey, T. Li, K. Li, D.J.L. Brett, P. R. Shearing, J. Power Sources, 2017, 365, 210-219. https://doi.org/10.1016/j.jpowsour.2017.08.095
  98. J. Wu, X. Liu, J. Mater. Sci.& Tech., 2010, 26, 293-305. https://doi.org/10.1016/S1005-0302(10)60049-7
  99. J. W. Fergus, Solid State Ionics, 2004, 171, 1-15. https://doi.org/10.1016/j.ssi.2004.04.010
  100. T. Nakamura, G. Petzow, L. J. Gauckler, Mater. Res. Bull., 1979, 14, 649-659. https://doi.org/10.1016/0025-5408(79)90048-5
  101. J.G.M. Furtado, R.N. Oliveira, Revista Materia, 2008, 13, 147-153. https://doi.org/10.1590/S1517-70762008000100018
  102. X.Wang, Y. Ma, S. Li, B. Zhu, M. Muhammed, Int. J. Hydrogen Energy, 2012, 37, 19380-19387. https://doi.org/10.1016/j.ijhydene.2011.10.061
  103. M. Xu, T. Li, M. Yang, M. Andersson, Sci. Bull., 2016, 61, 1333-1344. https://doi.org/10.1007/s11434-016-1146-3
  104. W.J. Quadakkers, J. P. Abellan, V. Shemet, L. Singheiser, J. Mater. High. Temp., 2003, 20, 115-127.
  105. Z. Yang, K. S. Weil, D. M. Paxton, J. W. Stevenson, J. Electrochem. Soc, 2003, 150, A1188-A1201. https://doi.org/10.1149/1.1595659
  106. A. S. Nesaraj, J. Sci. Ind. Res., 2010, 69, 169-176.
  107. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, M. Sennour, J. Power Sources, 2007, 171, 652-662. https://doi.org/10.1016/j.jpowsour.2007.06.255
  108. A.J. Majewski, A. Dhir, Mater. Renew. Sustain. Energy, 2018, 7, 16 https://doi.org/10.1007/s40243-018-0123-y
  109. Z. Yang, Int. Mater. Rev., 2008, 53, 39-54. https://doi.org/10.1179/174328007X212526
  110. A. Ruangvittayanon, S. Kuharuangrong, Suranaree J. Sci. Technol., 2009, 319-323.
  111. W.Z. Zhu, M. Yan, J. Zheijian Univ. Sci., 2004, 5, 1471-1503. https://doi.org/10.1631/jzus.2004.1471
  112. A. Fernandes, T. Woudstra, A.V. Wijk, L. Verhoef, P.V. Aravind, App. Energy, 2016, 173, 13-28. https://doi.org/10.1016/j.apenergy.2016.03.107
  113. Y. Jiang, A.V. Virkar, J. Electrochem. Soc., 2001, 148(7), A706-A709. https://doi.org/10.1149/1.1375166
  114. G. Meng, C. Jiang, J. Ma, Q. Ma, X. Liu, J. Power Sources, 2007, 173, 189-193. https://doi.org/10.1016/j.jpowsour.2007.05.002
  115. C. C. Chao, C. M. Hsu, Y. Cui, F. B. Prinz, ACS Nano, 2011, 5, 5692-5696. https://doi.org/10.1021/nn201354p
  116. T. Baquero, J. Escobar, J. Frade, D. Hotza, Ceram. Int., 2013, 36, 8279-8285.
  117. Z. Liu, M. Liu, L. Nie, M. Liu, Int. J. Hydrogen Energy, 2013, 38, 1082-1087. https://doi.org/10.1016/j.ijhydene.2012.10.048
  118. J. Zhou, L. Zhang, C. Liu, J. Pu, Q. Liu, C. Zhang, S. H. Chan, Int. J. Hydrogen Energy, 2019, 44, 21110-21114. https://doi.org/10.1016/j.ijhydene.2019.01.265
  119. T. Dias, D.P.F.D. Souza, Revista Materia, 2017, 22.
  120. M. R. Somalua, A. Muchtara, W. Ramli W. Dauda, N. P. Brandon, Renew. Sus. Energ. Rev., 2017, 75, 426-439. https://doi.org/10.1016/j.rser.2016.11.008
  121. S. U. Rehman, A. Shaur, R.H. Song, T. H. Lim, J. E. Hong , S.J. Park, S.B. Lee, J. Power Sources, 2019, 429, 97-104. https://doi.org/10.1016/j.jpowsour.2019.05.007
  122. Z. Akbari, A. Babaei, A. Ataie, J. Ultrafine Grained Nanostruct., 2018, 51, 53-59.
  123. O. Kesler, Mater. Sci. Forum, 2007, 539, 1385-1390. https://doi.org/10.4028/www.scientific.net/MSF.539-543.1385
  124. C. Hwang, C. H. Tsai, C. H. Lo, C.H. Sun, J. Power Sources, 2008, 180, 132-142. https://doi.org/10.1016/j.jpowsour.2008.01.075
  125. D. Stover, D. Hathiramani, R. Va$\ss$en, R. J.Damani, Surf. Coat. Tech., 2006, 201, 2002-2005. https://doi.org/10.1016/j.surfcoat.2006.04.039
  126. S. U. Rehman, R.H. Song, T. H. Lim, S. J. Park, J. E. Hong, J.W. Lee, S. B. Lee, J. Mater. Chem. A, 2018, 6, 6987-6996. https://doi.org/10.1039/C7TA10701C
  127. T. T. Pham, H. P. Tu, T. D. Dao, T.D. To, D.C. T. Doan, M.C. Dang, Adv. Nat. Sci.- Nanosci., 2019, 10, 1.

Cited by

  1. Improving the Stability of Series-Connected Solid Oxide Fuel Cells by Modifying the Electrolyte Composition vol.12, pp.1, 2020, https://doi.org/10.33961/jecst.2020.01396
  2. Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review vol.14, pp.5, 2020, https://doi.org/10.3390/en14051280