• Title/Summary/Keyword: Oxide Fuel

Search Result 1,147, Processing Time 0.027 seconds

Development and application of ex-solution nanocatalyst (용출 현상 기반 나노촉매의 개발 및 응용)

  • Kim, Jun Hyuk;Kim, Jun Kyu;Jung, WooChul
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.200-210
    • /
    • 2020
  • Supported catalysts are at the heart of manufacturing essential chemical, agricultural and pharmaceutical products. While the longevity of such systems is critically hinged on the durability of metal nanoparticles, the conventional deposition/dispersion techniques are difficult to enhance the stability of the metal nanoparticles due to the lack of control over the interaction between metal-support. Regarding this matter, ex-solution has begun to be recognized as one of the most promising methodologies to develop thermally and chemically robust nanoparticles. By dissolving desired catalysts as a cation form into a parent oxide, fine and uniformly distributed metal nano-catalysts can be subsequently grown in situ under reductive heat treatment, which is referred to ex-solution. Over the several years, ex-solved analog has resulted in tremendous progress in the chemical-electrochemical applications due to the exceptional robustness coupled with ease synthesis. Herein, we describe the ex-solution process in detail which therein introducing the unique characteristics of ex-solved particles that distinguish them from conventionally dispersed nanoparticles. We then go through the history of science regarding the ex-solution phenomena and summarize several major research achievements which embrace the ex-solved nanoparticles to markedly promote the catalytic performances. In conclusion, we address the remaining challenges and the future perspectives of this rapidly growing field.

Optimization of Operating Parameters and Components for Water Electrolysis Using Anion Exchange Membrane (음이온 교환막 알칼리 수전해를 위한 운전 조건 및 구성요소의 최적화)

  • Jang, Myeong Je;Won, Mi So;Lee, Kyu Hwan;Choi, Sung Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.159-165
    • /
    • 2016
  • The hydrogen has been recognized as a clean, nonpolluting and unlimited energy source that can solve fossil fuel depletion and environmental pollution problems at the same time. Water electrolysis has been the most attractive technology in a way to produce hydrogen because it does not emit any pollutants compared to other method such as natural gas steam reforming and coal gasification etc. In order to improve efficiency and durability of the water electrolysis, comprehensive studies for highly active and stable electrocatalysts have been performed. The platinum group metal (PGM; Pt, Ru, Pd, Rh, etc.) electrocatalysts indicated a higher activity and stability compared with other transition metals in harsh condition such as acid solution. It is necessary to develop inexpensive non-noble metal catalysts such as transition metal oxides because the PGM catalysts is expensive materials with insufficient it's reserves. The optimization of operating parameter and the components is also important factor to develop an efficient water electrolysis cell. In this study, we optimized the operating parameter and components such as the type of AEM and density of gas diffusion layer (GDL) and the temperature/concentration of the electrolyte solution for the anion exchange membrane water electrolysis cell (AEMWEC) with the transition metal oxide alloy anode and cathode electrocatalysts. The maximum current density was $345.8mA/cm^2$ with parameter and component optimization.

$TiO_2$ Particle Size Effect on the Performance of Dye-Sensitized Solar Cell ($TiO_2$ 입자 크기에 따른 염료감응태양전지의 성능 변화)

  • Kim, Ba-Wool;Park, Mi-Ju;Lee, Sung-Uk;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.145-146
    • /
    • 2007
  • Dye-Sensitized Solar Cell Solar cells(DSSC) were appeared for overcoming global environmental problems and lack of fossil fuel problems. And it is one of study field that is getting into the spotlight lately because manufacturing method is more simple and inexpensive than existing silicon solar cells. Oxide semiconductor is used for adsorption of dye and electron transfer in DSSC study, and $TiO_2$ is used most usually. Overall light conversion efficiency is changed by several elements such as $TiO_2$ particle size and structure, pore size and shape. In this study, we report the solar cell performance of titania$(TiO_2)$ film electrodes with various particle sizes. $TiO_2$ particle size was 16 nm, 25 nm, and mixture of 16nm and 25 nm, and manufactured using Doctor blade method. When applied each $TiO_2$ film to DSSC, the best efficiency was found at 16nm of $TiO_2$ particle. 16nm of $TiO_2$ particle has the highest efficiency compared to the others, because particles with smaller diameters would adsorb more dye due to larger surface area. And in case of the mixture of 16nm and 25 nm, the surface area was smaller than expected. It is estimated that double layer is adsorbed a large amount of chemisorbed dye and improved light scattering leading due to efficiency concentration light than mono layer.

  • PDF

Electrical Properties of Synthesis LSCF Cathode by Modified Oxalate Method (Modified Oxalate Method로 의해 합성한 LSCF Cathode의 전기적 특성)

  • Lee, Mi-Jai;Kim, Sei-Ki;Jung, Ji-Mi;Park, Sang-Sun;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.30-31
    • /
    • 2006
  • The LSCF cathode for Solid Oxide Fuel Cell was investigated to develop high performance unit cell at intermediate temperature by modified oxalate method with different electrolyte. The LSCF precursors using oxalic acid, ethanol and $NH_4OH$ solution were prepared at $80^{\circ}C$, and pH was controlled as 2, 6, 7, 8, 9 and 10. The synthesis precursor powders were calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. Unit cells were prepared with the calcined LSCF cathode, buffer layer between cathode and each electrolyte that is the LSGM, YSZ, ScSZ and CeSZ. The synthesis LSCF powders by modified oxalate method were measured by scanning electron microscope and X-ray diffraction. The interfacial polarization resistance of cell was characterized by Solatron 1260 analyzer. The crystal of LSCF powders show single phase at pH 2, 6, 7, 8 and 9, and the average particle size was about $3{\mu}m$. The electric conductivity of synthesis LSCF cathode which was calcined at $1200^{\circ}C$ shows the highest value at pH 7. The cell consist of GDC had the lowest interfacial resistance (about 950 S/cm@650) of the cathode electrode. The polarization resistance of synthesis LSCF cathode by modified oxalate method has the value from 4.02 to 7.46ohm at $650^{\circ}C$. GDC among the electrolytes, shows the lowest polarization resistance.

  • PDF

Effect of Particle Size of the Filler on the Thermal Properties of the Sealing Glass for Solid Oxide Fuel Cells (필러의 입자크기가 고체전해질 연료전지용 밀봉유리의 열적 특성에 미치는 영향)

  • Cho, Min-Young;Moon, Ji-Woong;Lee, Mi-Jae;Choi, Byong-Hyun;Park, Sun-Min;Hwang, Hae-Jin;Choi, Heon-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.305-305
    • /
    • 2007
  • SOFC용 밀봉유리$({\sim}10.0{\times}10^{-7}/K)$의 열팽창 계수를 SUS430$({\sim}12.0{\times}10^{-7}/K)$ 인터커넥터에 매칭 시키기 위하여 모유리에 비하여 열팽창계수가 큰 $CaTiO_3\;({\sim}13.5{\times}10^{-7}/K)$ 입자를 필러로서 첨가하였다. 필러입자의 첨가량이 증가함에 따라 밀봉재의 열팽창 계수가 증가하고, 동일 함량의 필러를 첨가하는 경우 필러 입자의 크기가 작을 수록 밀봉재의 연화점 상승 폭이 커서 SUS430 기판과의 접합 상태가 불량해짐을 관찰하였다. 필 테스트, 접합시험, 미세구조 분석 등을 통하여 필러 입자 크기가 증가 할 수록 SUS430과의 접합이 가능한 범위 내에서 보다 많은 양의 필러를 첨가하는 것이 가능하기 때문에 열팽창 계수 제어가 용이하다는 것을 확인 할 수 있었다.

  • PDF

Mechanical and Electrical Properties of $\textrm{La}_{0.68}\textrm{Ca}_{0.32}\textrm{Cr}_{0.97}\textrm{O}_{3}$ for SOFC Applications (SOFC용 $\textrm{La}_{0.68}\textrm{Ca}_{0.32}\textrm{Cr}_{0.97}\textrm{O}_{3}$의 기계적 및 전기적 특성)

  • Lee, Yu-Gi;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 1997
  • $La_{0.68}Ca_{0.32}Cr_{0.97}O_{3}$ interconnector films ior pimar rypn solid oxide fuel (,ells were prepared under various sinteririg conditions and their bending strength. relative ilerisit~. m t l c:lec ~ ~ - i i ; i l condl~cti\.lt\ were niexiureti in order to study their mechanical and electrical propertics Th' Irndirig sriength of $La_{0.68}Ca_{0.32}Cr_{0.97}O_{3}$ lt the room temperature \vas increased with increasing sinrering temperature dnfl tinic. The relative densit\- of more than 94% was ohtained 1)). sintering at $1400^{\circ}C$ for 5hrs. The present irlvestigiition rovcals thcit sirileririg of $La_{0.68}Ca_{0.32}Cr_{0.97}O_{3}$ at lorn. temperature xyvas greatly assisted by formation oi Ca,,,(CrO,),, Also the i,leitriczl conductivity at $1000^{\circ}C$ \vas more than 100S; cm d t e r heating at $1400^{\circ}C$ for 7hrs.

  • PDF

Active Reaction Sites and Oxygen Reduction Kinetics on $La_1_{-x}Sr_xMnO_{3+\delta}$(x=0.1-0.4)/YSZ (Yttria-Stabilized Zirconia) Electrodes for Solid Oxide Fuel Cells

  • Lee, Hee Y.;Cho, Woo S.;오승모
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.661-666
    • /
    • 1998
  • Active reaction sites and electrochemical O2 reduction kinetics on La_{1-x}Sr_xMnO_{3+{\delta}} (x=0.1-0.4)/YSZ (yttria-stabilized zirconia) electrodes are investigated in the temperature range of 700-900 ℃ at $Po_2=10^{-3}$-0.21 atm. Results of the steady-state polarization measurements, which are formulated into the Butler-Volmer formalism to extract transfer coefficient values, lead us to conclude that the two-electron charge transfer step to atomically adsorbed oxygen is rate-limiting. The same conclusion is drawn from the $Po_2$-dependent ac impedance measurements, where the exponent m in the relationship of $I_o$ (exchange current density) ∝ $P_{o_{2}}^m$ is analyzed. Chemical analysis is performed on the quenched Mn perovskites to estimate their oxygen stoichiometry factors (δ) at the operating temperature (700-900 ℃). Here, the observed δ turns out to become smaller as both the Sr-doping contents (x) and the measured temperature increase. A comparison between the 8 values and cathodic activity of Mn perovskites reveals that the cathodic transfer coefficients $({\alpha}_c)$ for oxygen reduction reaction are inversely proportional to δ whereas the anodic ones $({\alpha}_a)$ show the opposite trend, reflecting that the surface oxygen vacancies on Mn perovskites actively participate in the $O_2$ reduction reaction. Among the samples of x= 0.1-0.4, the manganite with x=0.4 exhibits the smallest 8 value (even negative), and consistently this electrode shows the highest ${\alpha}_c$ and the best cathodic activity for the oxygen reduction reaction.

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt (고온 용융염계에서 Ni-Base 초합금의 부식거동)

  • Cho, Soo-Haeng;Kang, Dae-Seong;Hong, Sun-Seok;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania (전사법으로 제조한 SOFC용 YSZ 전해질 전사지의 치밀화 및 전기화학적 특성)

  • Cho, Hae-Ran;Choi, Byung-Hyun;An, Yong-Tae;Baeck, Sung-Hyeon;Roh, Kwang-Chul;Park, Sun-Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.685-690
    • /
    • 2012
  • Decalcomania is a new method for SOFCs (solid oxide fuel cells) unit cell fabrication. A tight and dense $5{\mu}m$ Yttria-stabilized zirconia (8YSZ) electrolyte layer on anode substrate was fabricated by the decalcomania method. After 8YSZ as the electrolyte starting material was calcined at $1200^{\circ}C$, the particle size was controlled by the attrition mill. The median particle size (D50) of each 8YSZ was $39.6{\mu}m$, $9.30{\mu}m$, $6.35{\mu}m$, and $3.16{\mu}m$, respectively. The anode substrate was coated with decalcomania papers which were made by using 8YSZ with different median particle sizes. In order to investigate the effect of median particle sizes and sintering conditions on the electrolyte density, each sample was sintered for 2, 5 and 10 h, respectively. 8YSZ with a median particle size of $3.16{\mu}m$ which was sintered at $1400^{\circ}C$ for 10 had the highest density. With this 8YSZ, a SOFCs unit cell was manufactured with a $5{\mu}m$ layer by the decalcomania method. Then the unit cell was run at $800^{\circ}C$. The Open Circuit Voltage (OCV) and Maximum power density (MPD) was 1.12 V and $650mW/cm^2$, respectively.