• Title/Summary/Keyword: Oxide Coating

Search Result 828, Processing Time 0.023 seconds

Investigation on the polystyrene surface coating method of graphene oxide (산화그래핀(GO)의 플라스틱(PS) 표면 코팅방법에 대한 연구)

  • Park, Jaebum;Lee, Jihoon;Huh, Jeung Soo;Park, Danbi;Lim, Jeong Ok
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.77-83
    • /
    • 2021
  • In this study, we investigated various coating methods of graphene oxide on the surface of a petri dish made of polystyrene and analyzed the physical and chemical properties of the coated surface. For coating, spinning, spraying and pressing methods were attempted. The coated surface was characterized by SEM, Raman Spectroscopy, AFM, FT-IR, UV-Vis Spectroscopy and Contact Angle measurement. By spin coating and spray coating, well distributed graphene oxide in the form of multiple islands on the plastic surface with an average size of 5 to 20㎛ are observed by SEM, and high binding energy between graphene oxide and plastic surface is measured by AFM. In case of hand press coating, graphene oxide of 10㎛ or more was observed, and low surface energy was measured. By FT-IR and Raman Spectroscopy analysis, surface coating of graphene oxide was confirmed.

Template Synthesis of $Ni(OH)_2$ nanowires by Electrochemical Process

  • Zhang, Wentao;Beili, Pang;Lee, Hong-Ro
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.68-68
    • /
    • 2008
  • There are several methods for oxide coating on metals, such as aluminum or carbon nanotubes(CNTs). Usually CVD method is introduced for various oxide coating on CNTs. Another method is electrochemical method which use potential-pH diagram for oxide coating on metal or CNTs. In this experiment, electrochemical coating parameter for oxide coating on aluminum template modified by acids and hydrogen peroxide ($H_2O_2$) were examined. SEM micrographs displayed clearly $Ni(OH)_2$ coating on template. For confirmation of electrochemical method application to EDLC electrode material fabrication, EDS spectrum was analyzed.

  • PDF

Facile and effective antibacterial coatings on various oxide substrates

  • Kim, Dae Wook;Moon, Jeong-Mi;Park, Soyoung;Choi, Joon Sig;Cho, Woo Kyung
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.42-47
    • /
    • 2018
  • This work reports a facile and effective antibacterial coating for oxide substrates. As a coating material, a random copolymer, abbreviated as poly(TMSMA-r-PEGMA), was synthesized by radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA). Polymeric self-assembled monolayers of poly(TMSMA-r-PEGMA) were formed on various inorganic oxide substrates, including silicon oxide, titanium dioxide, aluminum oxide, and glass, via the simple dip-coating process. The polymer-coated substrates were characterized by ellipsometry, contact angle measurements, and X-ray photoelectron spectroscopy. The bacterial adhesion on the polymer-coated substrates was completely suppressed compared to that on the uncoated substrates.

Effect of Concrete Coating Materials for the Improvement of Concrete Durability (콘크리트 표면도장에 의한 내구성증진 효과)

  • 문한영;김성수;안태송;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.433-436
    • /
    • 1999
  • Long-term durability of the reinforced concrete structures exposed to marine environment deteriorates seriously by the attack of the chloride ion from see water results in corrosion of steel reinforcement in concrete. Their coating effect is aluminum oxide-isocyanate-based coating material, resistance of chloride penetration, carbonation and freezing and thawing resistance were compared to acryl-based coating material and sealer type o waterproofing material. Aluminum oxide-isocyante-based and acryl-based coating material show higher resistance to chloride penetration and carbonation than the sealer type do waterproofing material and aluminum oxide-isocyanate-based coating resist about 99% of chloride penetration. Resultants to the accelerated test for freezing and thawing, coating concrete show higher resistance than non-coating concrete, respectively.

  • PDF

Effects of electron reflection for the tungsten oxide film coated on shadow mask in CRT (CRT Shadow mask 위에 도포된 산화텅스텐 피막의 전자반사 효과)

  • 김상문;배준호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.129-132
    • /
    • 1998
  • In this paper, we have studied the effect of electron reflection on shadow mask on which tungsten oxide film is coated and have studied the variation of beam mislanding with coating thickness in CRT. We found the method to be able to control coating thicknessed and optimum coating thickness of tungsten oxide film was 1∼2$\mu\textrm{m}$. Mislanding of electron beam was reduced about 20∼48% with increasing coating thickness in CRT

  • PDF

The Effect of Surface Treatment on the Shear Bond Strength of Zirconia Ceramics to Resin Cemen (표면처리방법이 지르코니아와 레진시멘트 간의 전단결합강도에 미치는 영향)

  • Kim, Kyung Soo;Kim, Jeong-Mi;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.69-79
    • /
    • 2013
  • The aim of this study was to evaluate the effect of surface conditioning on the shear bond strength of zirconium-oxide ceramic to resin cement. A total of 120 disk-shaped zirconium-oxide ceramic blocks(3-TZP, Kyoritsu, Tokyo, Japan) were treated as follows: (1) no treatment; (2) sandblasting with 110 ${\mu}m$ aluminum-oxide(Al2O3); (3) particles tribochemical silica coating(RocatecTM, 3M ESPE). Then zirconium-oxide ceramic blocks were divided into six groups(10 for each group) and bonded with resin cement(Rely X U-200, 3M ESPE). (1) No treatment / No treatment (2) No treatment / Sandblasting with 110 ${\mu}m$ aluminum-oxide particles (3) No treatment / Silica coating (4) Sandblasting with 110 ${\mu}m$ aluminum-oxide particles / Sandblasting with 110 ${\mu}m$ aluminum-oxide particles (5) Sandblasting with 110 ${\mu}m$ aluminum-oxide particles / Silica coating (6) Silica coating / Silica coating. Each group was tested in shear bond strengths by UTM. Data analysis included one-way analysis of variance(ANOVA) and the Tukey Honestly Significant Difference test (P=0.05). Group that bonded two silica coated specimen showed a highest bond strength(P<0.05). Two silica coated surface conditioning group and air-abrasion and silica coated surface conditioning group showed significantly difference with other groups(P<0.05). Other groups had no significantly difference each other. Within the limitation of this study, Surface conditioning with Rocatec treatment to each side of specimen provided the highest bond strength.

Characterization of High Temperature Oxide Scales formed on Ni-18%W Coatings (Ni-18%W 코팅의 고온산화막 분석)

  • Ko J. H;Lee D. B
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.281-286
    • /
    • 2004
  • The oxide scales formed on Ni-18W(at.%) coating that was electrodeposited on steel were investigated using XRD, SEM and TEM. The oxide scales consisted mainly of an outer NiO layer, and an inner thick ($NiWO_4$+NiO) mixed layer. The unoxidized coating below the oxide scale was rich in Ni and depleted in W, owing to the consumption of Wand the resultant Ni enrichment. The oxidation resistance of Ni-18W coating was poorer than that of the TiN coating, due to the formation of nonprotective NiWO$_4$. During oxidation, Ni and the substrate element of Fe diffused outward, while oxygen inward, according to the concentration gradients.

Effects of the Nanometer-sized Bismuth Oxide Coating on Shadow Mask

  • Kim, Sang-Mun;Koh, Nam-Je
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.40-44
    • /
    • 2005
  • Nanometer-sized bismuth oxide with a diameter of about 80 nm was used as a new electron reflection material in a 29" Real Flat CPT. This bismuth oxide was well dispersed over pH8 in slurry. Spray coating was performed clearly and uniformly and was ensured that there was no clogging of shadow mask hole. Coating thickness was expressed to the brightness of chromaticity for the sprayed layer and was also well controlled during the spraying process. Doming was improved by about 10% in spite of the similar coating weight in comparison with the average 3.5 ${\mu}m$ of the conventional bismuth oxide.

Dip Coating of Amorphous Materials on Metal Surface (금속표면에 비정질의 피복)

  • Park, Byung-Ok;Yoon, Byung-Ha
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.2
    • /
    • pp.49-59
    • /
    • 1987
  • The properties of $Cr_2O_3-Al_2O_3-SiO_2$ composite oxide coatings on steel surface were investigated. The results obtained were as follows: The microhardness of oxide coating layer increased with increasing heat-treatment temperature and $Cr_2O_3$ content in coating layer. The hardness showed the highest value (850Hv) treated at 700$^{\circ}C$ for $SiO_2:Al_2O_3:Cr_2O_3$=1:1:4. Increasing heat-treatment temperature, corrosion current density became lower and coating layer became denser. The corrosion current density showed the lowest value $(6.5{\times}10^{-5}\;Acm^2)$ treated at 750$^{\circ}C\;for\;SiO_2:Al_2O_3:Cr_2O_3$=1:1:3. These results were explained by protective layer which was formed during heat-treatment. The bonding between matrix and coating layer is expected to be made mechanically and chemically by the inter diffusion of Ni and Fe. The composite oxide coating was formed by softening of the binder with increasing heat-treatment temperature. The strengthening of coating layer is to be resulted from the dispersion of major oxide particles.

  • PDF

The Oxide Coating Effects on the Magnetic Properties of Amorphous Alloys

  • 배영제;Jang, Ho G.;Chae, Hee K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.621-625
    • /
    • 1996
  • A variety of metal oxides were coated by sol-gel process from their metal alkoxides on the ribbons of Co-based and Fe-based amorphous alloys, and the effects of surface oxide coating on the magnetic properties of the alloy are investigated. The core loss is found to be reduced significantly by the oxide coating, the loss reduction becoming more prominent at higher frequencies. The shape of the hystersis loop is also dependent upon the kind of the coated metal oxide. The coatings of MgO, SiO2, MgO·SiO2 and MgO·Al2O3 induce tensile stress into the Fe-based ribbon whereas those of BaO, Al2O3, CaO·Al2O3, SrO·Al2O3 and BaO·Al2O3 induce compressive stress. These results may be explained by the modification of domain structures via magnetoelastic interactions with the shrinkage stress induced by the sol-gel coating.