DOI QR코드

DOI QR Code

Facile and effective antibacterial coatings on various oxide substrates

  • Kim, Dae Wook (Department of Chemistry, Chungnam National University) ;
  • Moon, Jeong-Mi (Graduate School of Analytical Science and Technology, Chungnam National University) ;
  • Park, Soyoung (Department of Chemistry, Graduate School of Science, Kyoto University) ;
  • Choi, Joon Sig (Department of Biochemistry, Chungnam National University) ;
  • Cho, Woo Kyung (Department of Chemistry, Chungnam National University)
  • Received : 2018.06.27
  • Accepted : 2018.07.22
  • Published : 2018.12.25

Abstract

This work reports a facile and effective antibacterial coating for oxide substrates. As a coating material, a random copolymer, abbreviated as poly(TMSMA-r-PEGMA), was synthesized by radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA). Polymeric self-assembled monolayers of poly(TMSMA-r-PEGMA) were formed on various inorganic oxide substrates, including silicon oxide, titanium dioxide, aluminum oxide, and glass, via the simple dip-coating process. The polymer-coated substrates were characterized by ellipsometry, contact angle measurements, and X-ray photoelectron spectroscopy. The bacterial adhesion on the polymer-coated substrates was completely suppressed compared to that on the uncoated substrates.

Keywords

Acknowledgement

Supported by : Chungnam National University, National Research Foundation of Korea (NRF)

References

  1. H.H. Tuson, D.B. Weibel, Soft Matter 9 (2013) 4368. https://doi.org/10.1039/c3sm27705d
  2. J.W. Costerton, P.S. Stewart, E.P. Greenberg, Science 284 (1999) 1318. https://doi.org/10.1126/science.284.5418.1318
  3. P.S. Stewart, J.W. Costerton, Lancet 358 (2001) 135. https://doi.org/10.1016/S0140-6736(01)05321-1
  4. P.A. Norowski, J.D. Bumgardner, J. Biomed. Mater. Res. B 88 (2009) 530.
  5. R.S. Smith, Z. Zhang, M. Bouchard, J. Li, H.S. Lapp, G.R. Brotske, D.L. Lucchino, D. Weaver, L.A. Roth, A. Coury, J. Biggerstaff, S. Sukavaneshvar, R. Langer, C. Loose, Sci. Transl. Med. 4 (2012) 153ra132.
  6. C. Defez, P. Fabbro-Peray, M. Cazaban, T. Boudemaghe, A. Sotto, J.P. Daures, J. Hosp. Infect. 68 (2008) 130. https://doi.org/10.1016/j.jhin.2007.11.005
  7. J.F. Frank, Adv. Food Nutr. Res. 43 (2001) 320.
  8. A. Hequet, V. Humbolt, J.-M. Berjeaud, C.-M. Pradier, Colloids Surf. B 84 (2011) 301. https://doi.org/10.1016/j.colsurfb.2011.01.012
  9. I.B. Beech, J. Sunner, Curr. Opin. Biotechnol. 15 (2004) 181. https://doi.org/10.1016/j.copbio.2004.05.001
  10. A. Caro, V. Humblot, C. Methivier, M. Minier, M. Salmain, C.-M. Pradier, J. Phys. Chem. 113 (2009) 2101. https://doi.org/10.1021/jp805284s
  11. M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, J.E. Gautrot, Chem. Rev. 114 (2014) 10976. https://doi.org/10.1021/cr500252u
  12. W.K. Cho, S.M. Kang, J.K. Lee, J. Nanosci. Nanotechnol. 14 (2014) 1231. https://doi.org/10.1166/jnn.2014.8891
  13. H. Keum, J.Y. Kim, B. Yu, S.J. Yu, J. Kim, H. Jeon, D.Y. Lee, S.G. Im, S. Jon, ACS Appl. Mater. Interfaces 9 (2017) 19736. https://doi.org/10.1021/acsami.7b06899
  14. S. Kim, J.-M. Moon, J.S. Choi, W.K. Cho, S.M. Kang, Adv. Funct. Mater. 26 (2016) 4099. https://doi.org/10.1002/adfm.201600613
  15. R.R. Choudhury, J.M. Gohil, S. Mohanty, S.K. Nayak, J. Mater. Chem. A 6 (2018) 313. https://doi.org/10.1039/C7TA08627J
  16. L. He, C. Gao, S.L. Cordelia, T.W. Chung, J.H. Xin, J. Ind. Eng. Chem. 46 (2017) 373. https://doi.org/10.1016/j.jiec.2016.11.006
  17. B.J. Privett, J. Youn, S.A. Hong, J. Lee, J. Han, J.H. Shin, M.H. Schoenfisch, Langmuir 27 (2011) 9597. https://doi.org/10.1021/la201801e
  18. X. Zhang, L. Wang, E. Levanen, RSC Adv. 3 (2013) 12003. https://doi.org/10.1039/c3ra40497h
  19. Q. Tu, J.-C. Wang, R. Liu, Y. Chen, Y. Zhang, D.-E. Wang, M.-S. Yuan, J. Xu, J. Wang, Colloids Surf. B 108 (2013) 34. https://doi.org/10.1016/j.colsurfb.2013.02.006
  20. Q. Tu, J.-C. Wang, R. Liu, Y. Zhang, J. Xu, J. Liu, M.-S. Yuan, W. Liu, J. Wang, Colloids Surf. B 102 (2013) 331. https://doi.org/10.1016/j.colsurfb.2012.08.025
  21. J.-W. Park, H. Kim, M. Han, Chem. Soc. Rev. 39 (2010) 2935. https://doi.org/10.1039/b918135k
  22. M. Sangermano, M. Periolatto, M. Castellino, J. Wang, K. Dietliker, J.L. Grutzmacher, H. Grutzmacher, ACS Appl. Mater. Interfaces 8 (2016) 19764. https://doi.org/10.1021/acsami.6b05822
  23. S. Edmondson, V.L. Osborne, W.T.S. Huck, Chem. Soc. Rev. 33 (2004) 14. https://doi.org/10.1039/b210143m
  24. J. Kuang, P.B. Messersmith, Langmuir 28 (2012) 7258. https://doi.org/10.1021/la300738e
  25. J. Huang, R.R. Koepsel, H. Murata, W. Wu, S.B. Lee, T. Kowalewski, A.J. Russell, K. Matyjaszewski, Langmuir 24 (2008) 6785. https://doi.org/10.1021/la8003933
  26. G. Li, G. Cheng, H. Xue, S. Chen, F. Zhang, S. Jiang, Biomaterials 29 (2008) 4592. https://doi.org/10.1016/j.biomaterials.2008.08.021
  27. O. Bouloussa, F. Rondelez, V. Semetey, Chem. Commun. (2008) 951.
  28. G. Cheng, Z. Zhang, S. Chen, J.D. Bryers, S. Jiang, Biomaterials 28 (2007) 4192. https://doi.org/10.1016/j.biomaterials.2007.05.041
  29. Y. Pan, L. Ma, S. Lin, Y. Zhang, B. Cheng, J. Meng, J. Mater. Chem. A 4 (2016) 15945. https://doi.org/10.1039/C6TA05746B
  30. W.K. Cho, S. Park, S. Jon, I.S. Choi, Nanotechnology 18 (2007) 395602. https://doi.org/10.1088/0957-4484/18/39/395602
  31. H. Lee, D. Hong, S. Jon, I.S. Choi, Bull. Korean Chem. Soc. 34 (2013) 3541. https://doi.org/10.5012/bkcs.2013.34.12.3541
  32. S. Jon, J. Seong, A. Khademhosseini, T.-N.T. Tran, P. Laibinis, R. Langer, Langmuir 19 (2003) 9989. https://doi.org/10.1021/la034839e
  33. A. Khademhosseini, S. Jon, K.Y. Suh, T.-N.T. Tran, G. Eng, J. Yeh, J. Seong, R. Langer, Adv. Mater. 15 (2003) 1995. https://doi.org/10.1002/adma.200305433
  34. D. Sung, S. Park, S. Jon, Langmuir 28 (2012) 4507. https://doi.org/10.1021/la204898y
  35. S. Park, K.-B. Lee, I.S. Choi, R. Langer, S. Jon, Langmuir 23 (2007) 10902. https://doi.org/10.1021/la7021903
  36. S. Jiang, Z. Cao, Adv. Mater. 22 (2010) 920. https://doi.org/10.1002/adma.200901407
  37. E. Ostuni, R.G. Chapman, M.N. Liang, G. Meluleni, G. Pier, D.E. Ingber, G.M. Whitesides, Langmuir 17 (2001) 6336. https://doi.org/10.1021/la010552a
  38. Z. Liu, Y. Zhu, X. Liu, K.W.K. Yeung, S. Wu, Colloids Surf. B 151 (2017) 165. https://doi.org/10.1016/j.colsurfb.2016.12.016
  39. P. Bahna, T. Dvorak, H. Hanna, A.W. Yasko, R. Hachem, I. Raad, Int. J. Antimicrob. Agents 29 (2007) 593. https://doi.org/10.1016/j.ijantimicag.2006.12.013
  40. H. Abdollahi, A. Ershad-Langroudi, A. Salimi, A. Rahimi, Ind. Eng. Chem. Res. 53 (2014) 10858. https://doi.org/10.1021/ie501289g
  41. D.-Y. Kang, C. Kim, G. Park, J.H. Moon, Sci. Rep. 5 (2015) 18185. https://doi.org/10.1038/srep18185
  42. W.-S. Tseng, C.-Y. Tseng, C.-T. Kuo, Nanoscale Res. Lett. 4 (2009) 234. https://doi.org/10.1007/s11671-008-9231-4
  43. M.H. Ahmed, J.A. Byrne, J. McLaughlin, W. Ahmed, J. Biomater. Nanobiotechnol. 4 (2013) 194. https://doi.org/10.4236/jbnb.2013.42024
  44. P. Kumar, A. Libchaber, Biophys. J. 105 (2013) 783. https://doi.org/10.1016/j.bpj.2013.06.029
  45. M. Chandler, R.E. Bird, L.J. Caro, Mol. Biol. 94 (1975) 127. https://doi.org/10.1016/0022-2836(75)90410-6
  46. Y. He, Y. Chang, J.C. Hower, J. Zheng, S. Chen, S. Jiang, Phys. Chem. Chem. Phys. 10 (2008) 5539. https://doi.org/10.1039/b807129b
  47. S. Chen, L. Li, C. Zhao, J. Zheng, Polymer 51 (2010) 5283.

Cited by

  1. Antibacterial Film Formation through Iron(III) Complexation and Oxidation-Induced Cross-Linking of OEG-DOPA vol.35, pp.45, 2018, https://doi.org/10.1021/acs.langmuir.9b02572
  2. Polymeric Materials with Antibacterial Activity: A Review vol.13, pp.4, 2021, https://doi.org/10.3390/polym13040613
  3. Formation of Various Polymeric Films via SURFACE‐INITIATED ARGET ATRP on Silicon Substrates vol.42, pp.5, 2021, https://doi.org/10.1002/bkcs.12256
  4. 박테리아 부착억제 고분자 기반 고체 표면의 항균 코팅 연구 동향 vol.32, pp.4, 2021, https://doi.org/10.14478/ace.2021.1048