• Title/Summary/Keyword: Oxidative impairment

Search Result 96, Processing Time 0.026 seconds

Effects of Polygalae Radix on Brain Tissue Oxidative Damage and Neuronal Apoptosis in Hippocampus Induced by Cerebral Hypoperfusion in Rats (원지(遠志)가 뇌혈류 저하에 의한 흰쥐 뇌조직의 산화적 손상과 해마신경세포 자연사에 미치는 영향)

  • Koo, Yong-Mo;Kwak, Hee-Jun;Kwon, Man-Jae;Song, Mincheol;Lee, Ji-Seung;Shin, Jung-Won;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • Objectives : Polygalae Radix (POL) has an ameliorating effect on learning and memory impairment caused by cerebral hypoperfusion. In regard to POL's action mechanism, this study was carried out to investigate the effects of POL on oxidative damage and neuronal apoptosis induced by cerebral hypoperfusion in rats.Methods : The cerebral hypoperfusion was induced by permanent bilateral common carotid artery occlusion (pBCAO) in Sprague-Dawley rats. POL was administered orally once a day (130 mg/kg of water-extract) for 28 days starting at 4 weeks after the pBCAO. Superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels in the brain tissue were measured using ELISA method. Expressions of 4-hydroxynonenal (4HNE) and 8-hydroxy-2'- deoxyguanosine (8-OHdG) were observed using immunohistochemistry. In addition, neuronal apoptosis was evaluated with Cresyl violet staining, TUNEL labeling, and immunohistochemistry against Bax and caspase-3.Results : POL treatment significantly increased SOD activities and significantly reduced MDA levels in the cerebral cortex. The up-regulations of 4HNE and 8-OHdG expression caused by pBCAO in the CA1 of hippocampus were significantly attenuated by POL treatment. POL treatment also restored the reduction of CA1 thickness and CA1 neurons caused by pBCAO and significantly attenuated the apoptotic markers including TUNEL-positive cells, Bax, and caspase-3 expression in the CA1 of hippocampus.Conclusions : The results show that POL attenuated the oxidative damage in brain tissue and neuronal apoptosis in the hippocampus caused by the cerebral hypoperfusion. It suggests that POL can be a beneficial medicinal herb to treat the brain diseases related to cerebral hypoperfusion.

Effects of Ginseng Radix on the ischemia-induced 4-vessel occlusion and cognitive impairments in the rat

  • Kim, Young-Ock
    • Journal of Ginseng Research
    • /
    • v.31 no.1
    • /
    • pp.44-50
    • /
    • 2007
  • Ginseng powerfully tonifies the original Qi. Ginseng used for insomnia, palpitations with anxiety, restlessness from deficient Qi and blood and mental disorientation. In order to investigate whether Ginseng cerebral ischemia-induced neuronal and cognitive impairments, we examined the effect of Ginseng on ischemia-induced cell death in the hippocampus, and on the impaired learning and memory in the Morris water maze and passive avoidance in rats. Ginseng when administered to rat at a dose of 200 mg/kg i.p. water extracts to 0 minutes and 90 minutes after 4-VO, significantly neuroprotective effects by 86.4% in the hippocampus of treated rats. For behavior test, rats were administered Ginseng (200mg/kg p.o.) daily for two weeks, followed by their training to the tasks. Treatment with Ginseng produced a marked improvement in escape latency to find the platform in the Morris water maze. Ginseng reduced the ischemia-induced learning disability in the passive avoidance. Consistent with behavioral data, treatments with Ginseng reduced jschemia-induced cell death in the hippocampal CA1 area. Oxidative stress is a causal factor in the neuropathogenesis of ischemic-reperfusion injury. Oxidative stress was examined in a rat model of global brain ischemia. The effects of Ginseng on lipid peroxidation (inhibition of the production of malondialdehyde, MDA) in different regions of the rat brain were studied. Ferrous sulfate and ascorbic acid (FeAs) were used to induce lipid peroxidation. The antiperoxidative effect showed 48-72% protection from tissue damage as compared with untreated animals. These results showed that Ginseng have a protective effect against ischemia-induced neuronal loss and learning and memory damage.

MITOCHONDRIAL DNA DELETION AND IMPAIRMENT OF MITOCHONDRIAL BIOGENESIS ARE MEDIATED BY REACTIVE OXYGEN SPECIES IN IONIZING RADIATION-INDUCED PREMATURE SENESCENCE

  • Eom, Hyeon-Soo;Jung, U-Hee;Jo, Sung-Kee;Kim, Young-Sang
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.119-126
    • /
    • 2011
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and $H_2O_2$-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and $H_2O_2$-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-${\beta}$-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

Inhibitory effect of Korean Red Ginseng extract on DNA damage response and apoptosis in Helicobacter pylori-infected gastric epithelial cells

  • Kang, Hyunju;Lim, Joo Weon;Kim, Hyeyoung
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • Background: Helicobacter pylori increases reactive oxygen species (ROS) and induces oxidative DNA damage and apoptosis in gastric epithelial cells. DNA damage activates DNA damage response (DDR) which includes ataxia-telangiectasia-mutated (ATM) activation. ATM increases alternative reading frame (ARF) but decreases mouse double minute 2 (Mdm2). Because p53 interacts with Mdm2, H. pylori-induced loss of Mdm2 stabilizes p53 and induces apoptosis. Previous study showed that Korean Red Ginseng extract (KRG) reduces ROS and prevents cell death in H. pylori-infected gastric epithelial cells. Methods: We determined whether KRG inhibits apoptosis by suppressing DDRs and apoptotic indices in H. pylori-infected gastric epithelial AGS cells. The infected cells were treated with or without KRG or an ATM kinase inhibitor KU-55933. ROS levels, apoptotic indices (cell death, DNA fragmentation, Bax/Bcl-2 ratio, caspase-3 activity) and DDRs (activation and levels of ATM, checkpoint kinase 2, Mdm2, ARF, and p53) were determined. Results: H. pylori induced apoptosis by increasing apoptotic indices and ROS levels. H. pylori activated DDRs (increased p-ATM, p-checkpoint kinase 2, ARF, p-p53, and p53, but decreased Mdm2) in gastric epithelial cells. KRG reduced ROS and inhibited increase in apoptotic indices and DDRs in H. pylori-infected gastric epithelial cells. KU-55933 suppressed DDRs and apoptosis in H. pylori-infected gastric epithelial cells, similar to KRG. Conclusion: KRG suppressed ATM-mediated DDRs and apoptosis by reducing ROS in H. pylori-infected gastric epithelial cells. Supplementation with KRG may prevent the oxidative stress-mediated gastric impairment associated with H. pylori infection.

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Journal of Audiology & Otology
    • /
    • v.23 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Korean Journal of Audiology
    • /
    • v.23 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.

Antioxidant Effect of Chungkukjang Supplementation against Memory Impairment induced by Scopolamine in Mice (Scopolamine으로 유도된 기억 손상 마우스에서 청국장 식이의 항산화 효과)

  • Kong, Hyun-Joo;Lee, Kyung-Eun;Yang, Kyung-Mi
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.3
    • /
    • pp.237-249
    • /
    • 2016
  • In this study, the antioxidant effect of Chungkukjang supplementation against memory impairment and oxidative stress in scopolamine (2 mg/kg i.p)-injected mice was investigated. The experimental animals were divided into five groups and fed experimental diets for 12 weeks; normal diet group (C), scopolamine + normal diet group (S), scopolamine + 63.0% soybean Chungkukjang supplementation group (SS), scopolamine + 45.0% Yakkong Chungkukjang supplementation group (SY), and scopolamine + 50.0% black foods such as black rice, black sesame seeds, and sea tangle added Yakkong Chungkukjang group (SYB). For the results of food intake, body weight gain, and brain weights, levels of scopolamine-injected groups were lower than the levels of the control group. The reduced brain weight of the scopolamine-injected group (S) was regulated to control level by supplementation of three types Chungkukjang. In the oxidative stress indicator, nitric oxide and malondialdehyde levels in serum of scopolamine-injected mice were higher than those of other groups. However, supplementation of soybeans, Yakkong and black foods added Yakkong Chungkukjang was proven to regulate them. Antioxidant enzyme activities such as superoxide dismutase (SOD) and glutathione-S-transferase (GST) in serum showed no significant differences among the groups. The reduced levels of vitamin A and vitamin E in serum and brain tissue of scopolamine-injected mice were controlled by supplementation of three types of Chungkukjang. Total antioxidant capacity (TAC) of scopolamine-injected group was lower than those of other groups. However, TAC was significantly elevated by Chunggukjang supplementation. Therefore, antioxidative effects of soybeans, Yakkong, and black foods added Yakkong Chungkukjang supplementations against oxidative stress in scopolamine-injected in mice could expected.

A Proposal of Dietary Supplement from Choto-san, a Kampo Medicine

  • Watanabe, Hiroshi
    • Biomolecules & Therapeutics
    • /
    • v.12 no.3
    • /
    • pp.138-144
    • /
    • 2004
  • Therapeutic effect of a Kampo medicine, Choto-san, in patients with vascular dementia was demonstrated by a double-blind and placebo-controlled clinical trial. To clarify the therapeutic efficacy of Choto-san, anti-ischemic effect in mice, hypotensive effect in spontaneously hypertensive rats (SHR), anti-oxidative effects in vitro, and N-methyl-D-aspartate (NMDA) receptor-blocking activity using Xenopus oocytes were studied. (1) Pretreatment with Choto-san (0.75-6.O g/kg, P.O.) or a component herb Chotoko (Uncaria genus: 75 - 600 mg/kg, P.O.) prevented ischemia-induced impairment of spatial learning behaviour in mice. Indole alkaloids- and phenolic fractions extracted from Chotoko also improved significantly the learning deficit. (2) Subchronic administration of Choto-san (0.5 g/kg, p.o.) caused a significant hypotensive effects in SHR. (3) Choto-san, Chotoko, and the phenolic constituent, (-) epicatechin, significantly protected the NG108-15 cell injury induced by $H_20_2$ exposure in vitro and also inhibited lipid peroxidation in the brain homogenate. (4) Indole alkaloids, rhynchophylline and isorhynchophylline (1-100 uM), reversibly reduced NMDA-induced current in the receptor-expressed Xenopus oocytes. These results suggest that anti-vascular dementia effects of Choto-san are mainly due to the effect of Chotoko. From these results, it is possible to make a novel dietary supplement through several extraction steps from Chotoko.

Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death

  • Daeun Shim;Jiyeon Han
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.575-583
    • /
    • 2023
  • Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis.

Cicadidae Periostracum, the Cast-off Skin of the Cicada, Attenuates Movement Impairment and Dopaminergic Neuronal Damage in 6-OHDA-induced Parkinson's Disease Model (6-OHDA으로 유도한 파킨슨병 모델에서의 선퇴추출물의 행동장애 및 도파민 세포 사멸 억제 효과)

  • Hye-Sun Lim;Gunhyuk Park
    • Journal of Environmental Science International
    • /
    • v.32 no.10
    • /
    • pp.723-729
    • /
    • 2023
  • Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by dopaminergic neuronal loss in the substantia nigra, resulting in reduced dopamine levels and consequent motor dysfunction. Genetic and environmental factors contribute to oxidative stress in PD. Cicadidae Periostracum (CP), a traditional Korean medicine, has shown neuroprotective effects against MPTP-induced neurotoxicity in PD. However, its effects on the 6-hydroxydopamine (6-OHDA) model have not been established. This study examined CP's effects on a 6-OHDA-induced PD model. CP protected against 6-OHDA damage in both in vitro and in vivo studies. Furthermore, CP reduced the production of reactive oxygen species, inhibited apoptosis, preserved dopamine levels, protected tyrosine hydroxylase in the substantia nigra, and improved motor function. These findings suggest that CP may delay PD progression by maintaining the redox balance.