• Title/Summary/Keyword: Oxidative Damage

Search Result 1,520, Processing Time 0.027 seconds

Research Trends on the Therapeutic Potential of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., for the Prevention of Sarcopenia (동충하초(Cordyceps spp.)의 유효 생리활성 성분인 cordycepin의 근감소증 예방에 대한 연구 동향)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.482-490
    • /
    • 2022
  • Sarcopenia, a geriatric and multifactorial syndrome characterized by progressive systemic skeletal muscle disorder, may be associated with many comorbidities. Sarcopenia caused by a decrease in muscle mass and muscle strength is accompanied by the aggravation of various pathological conditions, and as life expectancy increases, its prevalence will continue to increase in the future. During the aging process, chronic oxidative stress and increased inflammatory responses act as major contributors to skeletal muscle loss. In addition, disruption of autophagy and apoptosis signals associated with dysfunction of mitochondria, which are essential for energy metabolism, accelerates the loss of muscle proteins. The pharmacological effect of cordycepin, a major physiologically active substance in the genus Cordyceps, which has been widely used for the prevention and treatment of various diseases for a long time, is directly related to its antioxidant and anti-inflammatory actions. In this review, we present the correlation between apoptosis, autophagy, protein catabolism, and satellite cell activity important for muscle regeneration using cordycepin for the prevention and treatment of sarcopenia. Although there have been few studies so far on the use of cordycepin for sarcopenia, previous studies suggest that cordycepin may contribute to inhibiting the age-related weakening of mitochondrial function and blocking the breakdown of muscle proteins. In addition, the protective effect of cordycepin on muscle cell damage is considered to be closely related to its antioxidant and anti-inflammatory activities. Therefore, it is considered that more continuous basic research is needed, focusing on the molecular biological mechanism of cordycepin, which is involved in the anti-aging of muscle cells.

Evaluation of Immune Enhancing Activity of Luthione, a Reduced Glutathione, in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 환원형 glutathione인 luthione의 면역 증강 활성 평가)

  • Seon Yeong Ji;Da Hye Kwon;Hye Jin Hwang;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.397-405
    • /
    • 2023
  • Although glutathione (GSH) has been shown to play an important role in the prevention of oxidative damage as an antioxidant, studies on immune regulation by it have not been properly conducted. In this study, we investigated whether luthione®, a reduced GSH, has an immune enhancing effect in murine macrophage RAW 264.7 cells. The results of flow cytometry and immunofluorescence experiments indicated that luthione increased phagocytic activity, a representative function of macrophages, compared to the control cells. According to the results of the cytokine array, the expression of interleukin (IL)-5, IL-1β, and IL-27 was significantly increased in the luthione-treated cells. Luthione also enhanced the production of tumor necrosis factor-α and IL-1β through increased expression of their proteins, and increased release of the immune mediators such as nitric oxide (NO) and prostaglandin E2 was associated with increased expression of inducible NO synthase and cyclooxygenase-2. In addition, the expression of cluster of differentiation 86, an M1 macrophage marker, was dramatically enhanced in RAW 264.7 cells treated with luthione. Furthermore, as a result of heat map analysis, we found that cytokine signaling 1/3-mediated signal transducer and activator of transcription/Janus tyrosine kinase signaling pathway was involved in the immunomodulatory effect by luthione. In conclusion, our data suggested that luthione could act as a molecular regulator in M1 macrophage polarization and enhance immune capacity by promoting macrophage phagocytic function.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.

Monitoring of Melatonin Contents in Nuts, Seeds, and Beans in Gyeonggi-Do (경기도 내 유통 중 견과종실류 등의 멜라토닌 함량 조사)

  • Yu Na Song;Hae Geun Hong;Yeon Ok Kwon;Jin Ok Ha;Hyeon Ji Kim;Myeong Jin Son;Jeong Hwa Park;Bo Yeon Kweon
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • Nuts are essential components of a healthy diet as they provide nutritional value and bioactive components. Melatonin, is a hormone secreted from the pineal gland of the brain that prevents oxidative damage in various tissues, and also found in plants. This study presents a validation method for extracting and quantitatively analyzing melatonin in nuts, seeds, and beans in Gyeonggi-do; the method utilized chromatographic techniques and optimized extraction procedures, considering the high oil content of nuts. The average content of melatonin in nuts, seeds, and beans was 1200.83 (409.76-2223.56), 934.83 (454.10-1736.60), and 616.46 (494.70-825.12) pg/g, respectively. Melatonin content was higher in the kernel with pellicle than that in the kernel alone in walnuts and chestnuts. Furthermore, the presence of melatonin was lower in newly harvested walnuts, chestnuts, and peanuts than in those stored after being harvested the previous year.

Neuroprotective effects of hesperetin on H2O2-induced damage in neuroblastoma SH-SY5Y cells

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.899-916
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is a fundamental neurodegenerative disease trigger that damages and decimates nerve cells. Neurodegenerative diseases are chronic central nervous system disorders that progress and result from neuronal degradation and loss. Recent studies have extensively focused on neurodegenerative disease treatment and prevention using dietary compounds. Heseperetin is an aglycone hesperidin form with various physiological activities, such as anti-inflammation, antioxidant, and antitumor. However, few studies have considered hesperetin's neuroprotective effects and mechanisms; thus, our study investigated this in hydrogen peroxide (H2O2)-treated SH-SY5Y cells. MATERIALS/METHODS: SH-SY5Y cells were treated with H2O2 (400 µM) in hesperetin absence or presence (10-40 µM) for 24 h. Three-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability, and 4',6-diamidino-2-phenylindole staining allowed us to observe nuclear morphology changes such as chromatin condensation and apoptotic nuclei. Reactive oxygen species (ROS) detection assays measured intracellular ROS production; Griess reaction assays assessed nitric oxide (NO) production. Western blotting and quantitative polymerase chain reactions quantified corresponding mRNA and proteins. RESULTS: Subsequent experiments utilized various non-toxic hesperetin concentrations, establishing that hesperetin notably decreased intracellular ROS and NO production in H2O2-treated SH-SY5Y cells (P < 0.05). Furthermore, hesperetin inhibited H2O2-induced inflammation-related gene expression, including interluekin-6, tumor necrosis factor-α, and nuclear factor kappa B (NF-κB) p65 activation. In addition, hesperetin inhibited NF-κB translocation into H2O2-treated SH-SY5Y cell nuclei and suppressed mitogen-activated protein kinase protein expression, an essential apoptotic cell death regulator. Various apoptosis hallmarks, including shrinkage and nuclear condensation in H2O2-treated cells, were suppressed dose-dependently. Additionally, hesperetin treatment down-regulated Bax/Bcl-2 expression ratios and activated AMP-activated protein kinase-mammalian target of rapamycin autophagy pathways. CONCLUSION: These results substantiate that hesperetin activates autophagy and inhibits apoptosis and inflammation. Hesperetin is a potentially potent dietary agent that reduces neurodegenerative disease onset, progression, and prevention.

Evaluation of skin improvement efficacy of herbal medicine extracts on skin keratinocytes stimulated with fine dust PM10 (미세먼지 PM10으로 손상을 유도한 피부각질형성세포에서 한약재 추출물의 피부 개선 효능 평가)

  • Dong-Hee Kim;Yun Hwan Kang;Bo-Ae Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.856-867
    • /
    • 2023
  • Due to the increase in fine dust caused by environmental pollution, oxidative damage and aging of the skin are accelerated. In this study, the antioxidant, hyaluronic acid, filaggrin, MMP-1, and ROS level of selected herbal extracts were evaluated to confirm the protective efficacy of keratinocytes treated PM10. As a result, the antioxidant capacity of 1,1-diphenyl-2-picrylhydrazyl(DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid(ABTS), and FRAP assay increased in a concentration-dependent manner. Keratinocytes the group treated with 300 ㎍/ml of PM10, hyaluronic acid and filaggrin decreased by more than 50%, and increased in the group treated with extracts of Alpinia officinarum, Ulmus macrocarpa, and Ulmus macrocarpa but decreased when the extract was treated, which is evaluated as inhibiting the degradation of collagen and elastin. In addition, in the case of ROS measurement using zebrafish embryos, it was confirmed that the extract was reduced when the extract was treated 25 ㎍/ml, the intensity of fluorescence similar to the negative control was shown, confirming that the production of ROS was significantly reduced. Through this study, the selected oriental medicinal materials, Alpinia officinarum, Ulmus macrocarpa, and Ulmus macrocarpa, protect the skin from fine dust. It is thought that it can be used as an anti-aging product for skin improvement as a material that can be improved or improved.

Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties

  • Hong Kyu Lee;Yun-Jung Na;Su-Min Seong;Dohee Ahn;Kyung-Chul Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.368-378
    • /
    • 2024
  • Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.

Piperine ameliorates the severity of fibrosis via inhibition of TGF-β/SMAD signaling in a mouse model of chronic pancreatitis

  • Ji-Won Choi;Sung-Kon Lee;Myoung-Jin Kim;Dong-Gu Kim;Joon-Yeon Shin;Ziqi Zhou;Il-Joo Jo;Ho-Joon Song;Gi-Sang Bae;Sung-Joo Park
    • Molecular Medicine Reports
    • /
    • v.20 no.4
    • /
    • pp.3709-3718
    • /
    • 2019
  • Chronic pancreatitis (CP) is characterized by recurrent pancreatic injury, resulting in inflammation and fibrosis. Currently, there are no drugs for the treatment of pancreatic fibrosis associated with CP. Piperine, a natural alkaloid found in black pepper, has been reported to show anti-inflammatory, anti-oxidative, and antitumor activities. Although piperine exhibits numerous properties in regards to the regulation of diverse diseases, the effects of piperine on CP have not been established. To investigate the effects of piperine on CP in vivo, we induced CP in mice through the repetitive administration of cerulein (50 ㎍/kg) six times at 1-h intervals, 5 times per week, for a total of 3 weeks. In the pre-treatment groups, piperine (1, 5, or 10 mg/kg) or corn oil were administrated orally at 1 h before the first cerulein injection, once a day, 5 times a week, for a total of 3 weeks. In the post-treatment groups, piperine (10 mg/kg) or corn oil was administered orally at 1 or 2 week after the first cerulein injection. Pancreases were collected for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the anti-fibrogenic effects and regulatory mechanisms of piperine. Piperine treatment significantly inhibited histological damage in the pancreas, increased the pancreatic acinar cell survival, reduced collagen deposition and reduced pro-inflammatory cytokines and chemokines. In addition, piperine treatment reduced the expression of fibrotic mediators, such as α-smooth muscle actin (α-SMA), collagen, and fibronectin 1 in the pancreas and PSCs. Moreover, piperine treatment reduced the production of transforming growth factor (TGF)-β in the pancreas and PSCs. Furthermore, piperine treatment inhibited TGF-β-induced pSMAD2/3 activation but not pSMAD1/5 in the PSCs. These findings suggest that piperine treatment ameliorates pancreatic fibrosis by inhibiting TGF-β/SMAD2/3 signaling during CP.

Diesel Exhaust Particles Impair Therapeutic Effect of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis through ROS/ERK/cFos Signaling Pathway

  • Hyun Sung Park;Mi-Kyung Oh;Joong Won Lee;Dong-Hoon Chae;Hansol Joo;Ji Yeon Kang;Hye Bin An;Aaron Yu;Jae Han Park;Hee Min Yoo;Hyun Jun Jung;Uimook Choi;Ji-Won Jung;In-Sook Kim;Il-Hoan Oh;Kyung-Rok Yu
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.203-216
    • /
    • 2022
  • Background and Objectives: Epidemiological investigations have shown positive correlations between increased diesel exhaust particles (DEP) in ambient air and adverse health outcomes. DEP are the major constituent of particulate atmospheric pollution and have been shown to induce proinflammatory responses both in the lung and systemically. Here, we report the effects of DEP exposure on the properties of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs), including stemness, regeneration, and immunomodulation. Methods and Results: Non-apoptotic concentrations of DEP (10 ㎍/ml) inhibited the migration and osteogenic differentiation capacity of WJ-MSCs. Gene expression profiling showed that DEP increased intracellular reactive oxygen species (ROS) and expression of pro-inflammatory and metabolic-process-related genes including cFos. Furthermore, WJ-MSCs cultured with DEP showed impaired suppression of T cell proliferation that was reversed by inhibition of ROS or knockdown of cFos. ERK inhibition assay revealed that DEP-induced ROS regulated cFos through activation of ERK but not NF-κB signaling. Overall, low concentrations of DEP (10 ㎍/ml) significantly suppressed the stemness and immunomodulatory properties of WJ-MSCs through ROS/ERK/cFos signaling pathways. Furthermore, WJ-MSCs cultured with DEP impaired the therapeutic effect of WJ-MSCs in experimental colitis mice, but was partly reversed by inhibition of ROS. Conclusions: Taken together, these results indicate that exposure to DEP enhances the expression of pro-inflammatory cytokines and immune responses through a mechanism involving the ROS/ERK/cFos pathway in WJ-MSCs, and that DEP-induced ROS damage impairs the therapeutic effect of WJ-MSCs in colitis. Our results suggest that modulation of ROS/ERK/cFos signaling pathways in WJ-MSCs might be a novel therapeutic strategy for DEP-induced diseases.

Effect of Exogenous Application of Sodium Nitroprusside on Alleviation of Low Temperature Stress in Kimchi Cabbage (Brassica rapa ssp. pekinensis) (Sodium Nitroprusside 처리가 배추의 저온 스트레스 경감에 미치는 영향)

  • Jinhyoung Lee;Seunghwan Wi;Hyejin Lee;Sanggyu Lee;Minseo Kang;Taeyang Kim;Seonghoe Jang;Heeju Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2023
  • The effects of exogenous sodium nitroprusside (SNP, nitric oxide donor) on the growth, yield, photosynthetic characteristics, and antioxidant enzyme activity of kimchi cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) was studied under the low temperature conditions. Kimchi cabbages were treated with SNP of three concentrations (7.5, 15, 30 mg·L-1) for three times at four-day intervals and exposed to low temperature (16/7℃) stress for seven days. SNP treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde (MDA) and H2O2 were significantly lower in the treatment of SNP compared to the non-treated control. The activity of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), increased in treated plants by up to 38, 187, 24 and 175%, respectively compared to the non-treated control. SNP-treated and untreated plants had similar growth characteristics. Compared to the control group, SNP-treatment increased fresh weight and leaf area by 5%. Overall, our findings suggest that the application of sodium nitroprusside to the leaves contributes to reducing physiological damage and enhancing the activities of antioxidant enzymes, thereby improving low temperature stress tolerance in kimchi cabbage.