• 제목/요약/키워드: Oxidative DNA cleavage

검색결과 47건 처리시간 0.028초

Anti-oxidant and anti-inflammatory activities of the various kinds of herbal tea

  • Lee, Jin Wook;Eo, Hyun Ji;Park, Gwang Hun;Song, Hun Min;Woo, So Hee;Kim, Mi Kyoung;Eom, Jung Hye;Lee, Man Hyo;Lee, Jeong Rak;Koo, Jin Suk;Jeong, Jin Boo
    • 대한본초학회지
    • /
    • 제29권2호
    • /
    • pp.1-6
    • /
    • 2014
  • Objectives : Reactive oxygen species (ROS) are involved in a wide spectrum of diseases including chronic inflammation and cancer. In this study, we investigated the antioxidant activities and anti-inflammatory effects of the extracts from the herbal teas such as Lonicera japonica Thunberg (L. japonica), Chrysanthemum morifolium Ramat (C. morifolium), Mentha arvensis L. (M. arvensis), and P.rhizoma. Methods : Anti-oxidant activity was evaluated using DPPH radical scavenging assay and $Fe^{2+}$ chelating assay. And DNA cleavage assay was performed to evaluate an anti-oxidative effect. Anti-inflammatory effect was performed using NO generation assay and western blot in LPS-stimulated RAW264.7 cell line. Results : L. japonica scavenged DPPH radical by 9.8% at 12.5 ${\mu}g/ml$, 24.8% at 25 ${\mu}g/ml$, 34.3% at 50 ${\mu}g/ml$, 61.1% at 100 ${\mu}g/ml$ and 75.8% at 200 ${\mu}g/ml$, respectively. In addition, C. morifolium and M. arvensis removed DPPH radical by 15.6% and 10.4% at 12.5 ${\mu}g/ml$, 34.8% and 22.8% at 25 ${\mu}g/ml$, 66.9% and 43.3% at 50 ${\mu}g/ml$, 87.4% and 69.1% at 100 ${\mu}g/ml$, and 92.1% and 73.2% at 200 ${\mu}g/ml$, respectively. However, P. rhizoma did not affect on DPPH radical scavenging. The $Fe^{2+}$ chelating activity was highest in L. japonica, but lowest in P. rhizoma among the herbal teas. In addition, the extracts from L. japonica, C. morifolium and M. arvensis inhibited oxidative DNA damage via its anti-oxidant activity. In anti-inflammatory effect, the extracts from C. morifolium inhibited NO production. In addition, it suppressed the $NF-{\kappa}B$ signaling pathway in LPS-stimulated RAW 264.7 cells. Conclusions : Together, this study indicates that L. japonica, M. arvensis and C. morifolium possess the protective effect against the oxidative DNA damage. Furthermore, C. morifolium exerts an anti-inflammatory effect.

Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species

  • Giyeol Han;Dong Gun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1547-1552
    • /
    • 2022
  • β-Amyrin is a pentacyclic triterpene widely distributed in leaves and stems worldwide. The ability of β-amyrin to induce the production of reactive oxygen species (ROS) in microorganisms suggests its potential as an antimicrobial agent. Thus, this study aimed to elucidate the antibacterial mode of action of β-amyrin. We treated Escherichia coli cells with β-amyrin and found that it triggered ROS accumulation. Excessive stress caused by ROS, particularly hydroxyl radicals, induces glutathione (GSH) dysfunction. GSH protects cells from oxidative and osmotic stresses; thus, its dysfunction leads to membrane depolarization. The resultant change in membrane potential leads to the release of apoptotic proteins, such as caspases. The activated caspases-like protein promotes the cleavage of DNA into single strands, which is a hallmark of apoptosis-like death in bacteria. Apoptotic cells usually undergo events such as DNA fragmentation and phosphatidylserine exposure, differentiating them from necrotic cells, and the cells treated with β-amyrin in this study were positive for annexin V and negative for propidium iodide, indicating apoptosis-like death. In conclusion, our findings suggest that the antibacterial mode of action of β-amyrin involves the induction of ROS, which resulted in apoptosis-like death in E. coli.

Protective effects skin keratinocyte of Oenothera biennis on hydrogen peroxide-induced oxidative stress and cell death via Nrf2/Ho1 pathway.

  • Lee, Seung Young;Jung, Ji Young;Choi, Hee Won;Choi, Kyung Min;Jeong, Jin-Woo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.103-103
    • /
    • 2018
  • Oenothera biennis, commonly known as evening primrose, a potential source of natural bioactive substances: flavonoids, steroids, tannins, fatty acids and terpenoids responsible for a diverse range of pharmacological functions. However, whether extract prepared from aerial part of O. biennis (APOB) protects skin against oxidative stress remains unknown. To investigate the protective effects of APOB against oxidative stress-induced cellular damage and elucidated the underlying mechanisms in the HaCaT human skin keratinocytes. Our results revealed that treatment with APOB prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased viability, and the highest DPPH radical-scavenging activities and reducing power of HaCaT cells. APOB also effectively attenuated H2O2-induced comet tail formation and inhibited the $H_2O_2$-induced phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V-positive cells. In addition, APOB exhibited scavenging activity against intracellular reactive oxygen species (ROS) accumulation and restored the mitochondrial membrane potential loss by $H_2O_2$. Moreover, $H_2O_2$ enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase (PARP), a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with APOB. Furthermore, APOB increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, APOB is able to protect HaCaT cells from $H_2O_2$-induced DNA damage and cell death through blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating the Nri2/HO-1 signaling pathway.

  • PDF

Fisetin Protects C2C12 Mouse Myoblasts from Oxidative Stress-Induced Cytotoxicity through Regulation of the Nrf2/HO-1 Signaling

  • Cheol Park;Hee-Jae Cha;Da Hye Kim;Chan-Young Kwon;Shin-Hyung Park;Su Hyun Hong;EunJin Bang;Jaehun Cheong;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.591-599
    • /
    • 2023
  • Fisetin is a bioactive flavonol molecule and has been shown to have antioxidant potential, but its efficacy has not been fully validated. The aim of the present study was to investigate the protective efficacy of fisetin on C2C12 murine myoblastjdusts under hydrogen peroxide (H2O2)-induced oxidative damage. The results revealed that fisetin significantly weakened H2O2-induced cell viability inhibition and DNA damage while blocking reactive oxygen species (ROS) generation. Fisetin also significantly alleviated cell cycle arrest by H2O2 treatment through by reversing the upregulation of p21WAF1/CIP1 expression and the downregulation of cyclin A and B levels. In addition, fisetin significantly blocked apoptosis induced by H2O2 through increasing the Bcl-2/Bax ratio and attenuating mitochondrial damage, which was accompanied by inactivation of caspase-3 and suppression of poly(ADP-ribose) polymerase cleavage. Furthermore, fisetin-induced nuclear translocation and phosphorylation of Nrf2 were related to the increased expression and activation of heme oxygenase-1 (HO-1) in H2O2-stimulated C2C12 myoblasts. However, the protective efficacy of fisetin on H2O2-mediated cytotoxicity, including cell cycle arrest, apoptosis and mitochondrial dysfunction, were greatly offset when HO-1 activity was artificially inhibited. Therefore, our results indicate that fisetin as an Nrf2 activator effectively abrogated oxidative stress-mediated damage in C2C12 myoblasts.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

알파 아마니틴에 의한 간독성에 대한 녹차 추출물의 보호 효과 (The Protective Effect of Green Tea Extract on Alpha-amanitin Induced Hepatotoxicity)

  • 안수환;선경훈;홍란;이병래;박용진
    • 대한임상독성학회지
    • /
    • 제17권2호
    • /
    • pp.58-65
    • /
    • 2019
  • Purpose: Alpha-amanitin induces potent oxidative stress and apoptosis, and may play a significant role in the pathogenesis of hepatotoxicity. This study examined the mechanisms of α-amanitin-induced apoptosis in vitro, and whether green tea extract (GTE) offers protection against hepatic damage caused by α-amanitin (AMA) induced apoptosis in vivo. Methods: The effects of GTE and SIL on the cell viability of cultured murine hepatocytes induced by AMA were evaluated using an MTT assay. Apoptosis was assessed by an analysis of DNA fragmentation and caspase-3. In the in vivo protocol, mice were divided into the following four groups: control group (0.9% saline injection), AMA group (α-amanitin 0.6 mg/kg), AMA+SIL group (α-amanitin and silibinin 50 mg/kg), and AMA+GTE group (α-amanitin and green tea extract 25 mg/kg). After 48 hours of treatment, the hepatic aminotransferase and the extent of hepatonecrosis of each subject was evaluated. Results: In the hepatocytes exposed to AMA and the tested antidotes, the cell viability was significantly lower than the AMA only group. An analysis of DNA fragmentation showed distinctive cleavage of hepatocyte nuclear DNA in the cells exposed to AMA. In addition, the AMA and GTE or SIL groups showed more relief of the cleavage of the nuclear DNA ladder. Similarly, values of caspase-3 in the AMA+GTE and AMA+SIL groups were significantly lower than in the AMA group. The serum AST and ALT levels were significantly higher in the AMA group than in the control and significantly lower in the AMA+GTE group. In addition, AMA+GTE induced a significant decrease in hepatonecrosis compared to the controls when a histologic grading scale was used. Conclusion: GTE is effective against AMA-induced hepatotoxicity with its apoptosis regulatory properties under in vitro and in vivo conditions.

Antioxidant Activity of (8E,13Z,20Z)-Strobilinin/(7E,13Z,20Z)-Felixinin from a Marine Sponge Psammocinia sp.

  • Jiang, Ya-Hong;Ryu, Seung-Hee;Ahn, Eun-Young;You, Song;Lee, Burm-Jong;Jung, Jee-H;Kim, Dong-Kyoo
    • Natural Product Sciences
    • /
    • 제10권6호
    • /
    • pp.272-276
    • /
    • 2004
  • During the course of our screening for bioactive metabolites from marine sponges, EZZ, the inseparable 1:1 mixture of (8E,13Z,20Z)-strobilinin and (7E,13Z,20Z)-felixinin has been found to deliver significant cytotoxicity against some cancer cell lines. In this study, the antioxidant activity of EZZ was first time evaluated by a series of antioxidant assays. It was found that EZZ was weak in scavenging the stable free radical 1,1-diphenyl-2-picrylhyrazyl (DPPH), but it was comparable to ascorbic acid in scavenging ABTS and superoxide radicals. In addition, EZZ could protect DNA from hydroxyl radical-induced strand cleavage. The findings of the present study suggest that EZZ possess certain antioxidant activity, which might help to prevent occurrence of cancer by alleviating the oxidative stress in cells.

Characterization of biphenyl biodegradation, and regulation of iphenyl catabolism in alcaligenes xylosoxydans

  • Lee, Na-Ri;On, Hwa-Young;Jeong, Min-Seong;Kim, Chi-Kyung;Park, Yong-Keun;Ka, Jong-Ok;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • 제35권2호
    • /
    • pp.141-148
    • /
    • 1997
  • Alcaligenes xylosoxydans strain SMN3 capable of utilizing biphenyl grew not only on phenol, and benzoate, but also on salicylate. Catabolisms of biphenyl and salicylate appear to be interrelated since benzoate is a common metabolic intermediate of these compounds. Enzyme levels in the excatechol 2. 3-dioxygenas which is meta-cleavage enzyme of catechol, but did not induce catechol 1, 2-dioxygenase. All the oxidative enzymes of biphenyl and 2, 3,-dihydroxybiphenyl (23DHBP) were induced when the cells were grown on biphenyl and salicylate, respectively. Biphenyl and salicylate could be a good inducer in the oxidation of biphenyl and 2, 3-dihydroxybiphenyl. The two enzymes for the degradation of biphenyl and salicylate were induced after growth on either biphenyl or salicylate, suggesting the presence of a common regulatory element. However, benzoate could not induce the enzymes responsible for the oxidation of these compounds. Biphenyl and salicylate were good inducers for indigo formation due to the activity of biphenyl dioxygenase. These results suggested that indole oxidation is a property of bacterial dioxygenase that form cis-dihydrodiols from aromatic hydrocarbon including biphenyl.

  • PDF

Molecular Cloning and Characterization of Catechol 2, 3-Dioxygenase Gene from Aniline-Degrading Psseudomonas acidovorans

  • Lee, Ji-Hyun;Bang, Sung-Ho;Park, Youn-Keun;Lee, Yung-Nok
    • 미생물학회지
    • /
    • 제30권4호
    • /
    • pp.316-321
    • /
    • 1992
  • Catechol 2, 3-dioxygenase (C230) catalyses the oxidative ring cleavage of catechol to 2-hydroxymuconic semialdehyde. This is one of the key reactions in the metabolism of the widespresd pollutant aniline. We have cloned a gene encoding C230 from cells of the aniline degrading bacteria, Pseudomonas acidovorance KCTC2494 strain and expressed in E. coli, A 11.3-kilobase Sau3A partial digested DNA fragment from KCTC2494 was cloned into phagemid vector pBluescript and designated as pLP201. The C230 gene was mapped to a 2.8-kb region, and the derection of transcription was determined. The cloned C230 gene contains its own promoter which can be recognized and employed by E. coli transcriptional apparatus. C230 activities of subclones were identified by enzyme assay and activity staining. The T7 RNA promoter/polymerase system and maxicell analysis showed that a polypeptide with Mw of 35 kDa is the C230 gene product.

  • PDF

Neuroprotective Effects of Carpinus tschonoskii MAX on 6-Hydroxydopamine-Induced Death of PC12 Cells

  • Kim, Min-Kyoung;Kim, Sang-Cheol;Kang, Jung-Il;Boo, Hye-Jin;Hyun, Jin-Won;Koh, Young-Sang;Park, Deok-Bae;Yoo, Eun-Sook;Kang, Ji-Hoon;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.454-462
    • /
    • 2010
  • The present study investigated the neuroprotective effect of Carpinus tschonoskii MAX and its intracellular protective mechanism on 6-hydroxydopamine (6-OHDA)-induced oxidative damage in PC12 cells. We found that pretreatment of PC12 cells with C. tschonoskii extract significantly inhibited the cell death induced by 6-OHDA in a dose dependent manner. C. tschonoskii extract decreased 6-OHDA-induced apoptotic events such as chromatin condensation, DNA fragmentation, the decrease of Bcl-2/Bax ratio, caspase-3 activation and PARP cleavage. C. tschonoskii extract also reduced generation of 6-OHDA-induced reactive oxygen species and nitric oxide. Furthermore, C. tschonoskii extract up-regulated the myocyte enhancer factor 2 D (MEF2D), a critical transcription factor for neuronal survival, and Akt activity, whereas it inhibited the activity of ERK1/2 and JNK. The results suggest that C. tschonoskii extract decreases 6-OHDA-induced oxidative stress and could prevent PC12 cell apoptosis induced by 6-OHDA via the up-regulation of MEF2D and Akt activity, and thus may have application in developing therapeutic agents for Parkinson's disease.