• Title/Summary/Keyword: Oxidation reactions

Search Result 444, Processing Time 0.026 seconds

Kinetic Studies on the Reactions of NADH Analogs : Effects of 3-Substituents of 1-benzyl-1,4-Dihydropyridines

  • Park, Kwang-Hee;Kim, Hong-Gie;Park, Joon-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.448-452
    • /
    • 1989
  • NADH analogs, 1-benzyl-3-substituted (X)-1,4-dihydropyridines 1-4 (1: X = $CONH_2$; 2: X = $CSNH_2$; 3: X = $COOCH_3$; 4: X = $COCH_3$) were synthesized. The second order rate constants for hydration reaction and oxidation reactions by $Cu^{2+}$, $Fe(CN)_6^{3-}$ or methylacridinium iodide (MAI) of the compounds were determined. For all reactions investigated, the rate constants increased with decreasing electronegative character of the 3-substituents of 1,4-dihydropyridines : the decreasing order of the reaction rates was 2>1>3>4. However, the sensitivity of the reaction rates on the 3-substituents differed among the reactions. This was explained in view of mechanisms of the reactions.

Liquid Phase Oxidation of Xylenes: Effects of Water Concentration and Alkali Metals

  • Jhung, Sung-Hwa;Lee, Ki-Hwa;Park, Youn-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • A facile and precise batch oxidation reaction system allows continuous monitoring of the oxidation rate and cumulated oxygen conversion of xylenes, and the side reactions to carbon monoxide and carbon dioxide may also be studied. The oxidation reaction can be analyzed precisely with the rate and amount of oxygen consumed. The reaction reveals that 4-carboxybenzaldehyde is an unstable intermediate of p-xylene oxidation as the reaction proceeds instantaneously from p-toluic acid to TPA (terephthalic acid). The alkali metals accelerate oxidation, even though they retard the reaction initially. The oxidation rate increases with decreasing water concentration. However, in the later part of reaction, the reactivity decreases a bit if the water concentration is very low. This retarding effect of water can be overcome partly by the addition of potassium. The oxidation of o-xylene, compared with the oxidation of p-xylene and m-xylene, proceeds quite fast initially, however, the oxidation rate of xylene isomers in the later stage of reaction is in the order of p-xylene > mxylene > o-xylene.

Mechanism of Intercalation Compounds in Graphite with Hydrogen Sulfate (I. Study of Intermediate Phase between 2 Stage and 1 Stage in Graphite Hydrogen Sulfate with Anodic Oxidation) (흑연에 황산을 Intercalation 시킬때의 Mechanism 규명 (I. 전기적 산화방법에 의한 Graphite Salts의 중간상에 관한 연구))

  • 고영신;한경석;이풍헌
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.5-8
    • /
    • 1985
  • Graphite has been oxidized to graphite hydrogen sulfate in concentrated $H_2SO_4$. Anodic oxidation and chemical oxidation of graphite in $H_2SO_4$ generally leads to the formation of intercalation compounds of the ionic salt type through incorporation of $H_2SO_4^-$ions and $H_2SO_4$ molecules into the graphite. Several other reactions also accur at various points of the charging cycle. But there is no satisfactory kinetics and mechanism of intercalationin graphite. We have studied them with anodic oxidation and chemical oxidation. We found six distinct phenomena between 2nd stage and 1st stage in chemical oxidation. We examined them in detail by the following in the measurements electrical oxidation. X-ray diffractions UV-Vis spectroscopy density measurements. We could obtained a equation for kinetic according to the reaction rate from this results and mechanism of intercalation between 2nd stage and 1st stage with hydrogen sulfate in graphite. Three thesis were written for the mechanism of intercalation compounds in graphite with hydrogen sulfate ; first thesis is anodic oxidation second thesis is chemical oxidation and definition of transit phase between 2nd etc the third thesis is the kinetic mechanism of intercalation compounds in graphite with Hydrogen sulfate. This thesis is the first paper among three thesis as anodic oxidation.

  • PDF

The Properties of VOCs(Benzene, Toluene) with NOx Removal in Exposed Concrete With $TiO_2$(Anatase type) Powder as Photocatalyst (이산화티탄($TiO_2$ anatase) 분말을 광촉매로 사용한 노출 콘크리트의 VOCs(Benzene, Toluene)와 질소산화물(NOx) 제거 특성 연구)

  • Kim, Kwang-Ryeon;Lee, Dong-Bum;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.588-591
    • /
    • 2004
  • Generally, $TiO_2$ powders absorb ultraviolet rays and make oxidation/reduction reactions on its surface. Hydroxide radical(OH), a product of photocatalyst reactions, has so strong oxidation/reduction electric potential that it can oxidize noxious gas like VOCs(Volatile Organic Compounds) and NOx. In this study, $TiO_2$ was substituted for exposed concrete to investigate the purifying degree of VOCs(Benzene, Toluene) and NOx. Anatase types of $TiO_2$ were used as photocatalyst. The sun rays and the ultraviolet were used as a light source. Anatase type $TiO_2$ was better than rutile type in purifying performance. The sunray showed the best purifying performance among the light sources. $3\%$ substitution of $TiO_2$ with the sunray was enough to purify VOCs(Benzene, Toluene) and NOx efficiently.

  • PDF

The Properties of NOx Removal in Cement Mortar With $TiO_2$ Powder as photocatalyst (이산화티탄($TiO_2$) 분말을 광촉매로 사용한 시멘트 모르터의 질소산화물(NOx) 제거 특성)

  • 김광련;이동범;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.671-674
    • /
    • 2003
  • Generally, $TiO_2$ powders absorb ultraviolet rays and make oxidation/reduction reactions on its surface. Hydroxide radical(OH), a product of photocatalyst reactions, has so strong oxidation/reduction electric potential that it can oxidize noxious gas like NOx. In this study, $TiO_2$ was substituted for cement to investigate the purifying degree of NOx. Rutile and anatase types of $TiO_2$ were used as photocatalyst. The sun rays and the ultraviolet were used as a light source. Anatase type $TiO_2$ was better than rutile type in purifying performance. The sunray showed the best purifying performance among the light sources. 3% substitution of TiO$_2$ with the sunray was enough to purify NOx efficiently.

  • PDF

Kinetics and Mechanism of Oxidation of Styryl Biphenyl and Styryl Fluorenyl Ketones by Pyridinium Chlorochromate

  • 성대동;P. Ananthakrishna Nadar
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1487-1492
    • /
    • 1999
  • The kinetics of oxidation of substituted styryl 4-biphenyl ketones and of substituted styryl 2-fluorenyl ketones by pyridinium chlorochromate (PCC) have been studied in 90% acetic acid- 10% water (v/v) containing perchloric acid and NaClO₄ at $10^0,\;20^0,\;30^0$ and 40℃. The reactions are first order in styryl ketones and PCC. The second order rate constants are well correlated only with σ$^+$ constants implying development of positive charge adjacent to benzene ring in the transition state. The effects of varying [HClO₄] and the percentage of acetic acid on the reactions have also been analysed. A mechanism involving nucleophilic attack of PCC leading to an unsymmetric intermediate from which epoxides are formed is proposed.

N3S-ligated Copper(II) Complex Catalyzed Selective Oxidation of Benzylic Alcohols to Aldehydes under Mild Reaction Conditions

  • Dharmalingam, Sivanesan;Koo, Eunhae;Yoon, Sungho;Park, Gyoosoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.715-720
    • /
    • 2014
  • A Cu(II) complex with an three nitrogens and one sulfur coordination environment was synthesized and characterized. Its redox potential was observed at 0.483 V vs. NHE, very similar to that of a Cu-containing fungal enzyme, galactose oxidase, which catalyzes the oxidation of alcohols to corresponding aldehydes with the concomitant reduction of molecular oxygen to water. The Cu(II) complex selectively oxidizes the benzylic alcohols using TEMPO/$O_2$ under mild reaction conditions to corresponding aldehydes without forming any over-oxidation product. Moreover, the catalyst can be recovered and reused multiple times for further oxidation reactions, thus minimizing the waste generation.

Evaluation of effective process for oxidation and coagulation by ferrous ion and hydrogen peroxide

  • Moon, H.J.;Kim, Y.M.;Lee, S.H.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.319-321
    • /
    • 2003
  • This research was carried out to evaluate the removal efficiencies of CODcr and colour for the dyeing wastewater by ferrous solution in Fenton process. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of CODcr and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

  • PDF

Study on dry reforming and partial oxidation of methane. (대기압 플라즈마를 이용한 메탄의 건식개질과 부분산화반응의 비교)

  • Hwang, Na-Kyung;Cha, Min-Suk;Lee, Dae-Hoon;Song, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2892-2897
    • /
    • 2008
  • Plasma techniques have been proposed to generate a hydrogen enrich gas to investigate a feasibility of plasma techniques on a fuel reforming, we considered a dry reforming and a partial oxidation with methane in the atmospheric pressure. For these experiments, we employed an arc jet plasma reactor. The effects of input power and oxidizer in each process were investigated by product analysis, including carbon monoxide, hydrogen, ethylene, propane, and acetylene as well as methane and carbon dioxide. In both processes, input electrical power activated the reactions significantly. The increased ratio of the carbon dioxide to methane in the dry reforming doesn't affect to a methane conversion, whereas increased ratio of oxidizer to methane in the partial oxidation was very effective for the reaction. Moreover, for a simultaneous treatment of methane and carbon dioxide, a feasibility of a dry reforming combined with partial oxidation also has been investigated.

  • PDF