• Title/Summary/Keyword: Oxidation layer

Search Result 1,137, Processing Time 0.021 seconds

Effect of plasma oxidation time on TMR devices prepared by a ICP sputter (ICP 스퍼터를 이용한 TMR 소자 제작에서 절연막의 플라즈마 산화시간에 따른 미세구조 및 자기적 특성 변화)

  • Lee, Yeong-Min;Song, O-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.900-906
    • /
    • 2001
  • We prepared tunnel magnetoresistance(TMR) devices of Ta($50\AA$)/NiFe($50\AA$)/IrMn(150$\AA$)/CoFe($50\AA$)/Al ($13\AA$)-O/CoFe($40\AA$)/NiFe($400\AA$)/Ta(50$\AA$) structure which has 100$\times$100 $\mu\textrm{m}^2$ junction area on $2.5\Times2.5 cm^{2}$ $Si/SiO_2$ ($1000\AA$) substrates by a inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using a ICP plasma oxidation method by varying oxidation time from 80 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We used a high resolution transmission electron microscope(HRTEM) to investigate microstructural evolution of insulating layer. The average resistance of devices increased from 16.38 $\Omega$ to 1018 $\Omega$ while MR ratio decreased from 30.31 %(25.18 %) to 15.01 %(14.97 %) as oxidation time increased from 80 sec to 360 sec. The values in brackets are calculated values considering geometry effect. By comparing cross-sectional TEM images of 220 sec and 360 sec-oxidation time, we found that insulating layer of 360 sec-oxidized was 30 % and 40% greater than that of 150 sec-oxidized in thickness and thickness variation, respectively. Therefore, we assumed that increase of thickness variation with oxidation time is major reason of MR decrease. The resistance of 80 sec-oxidized specimen was 160 k$\Omega$$\mu\textrm{m}^2$ which is appropriate for industrial needs of magnetic random access memory(MRAM) application.

  • PDF

Boron Diffused Layer Formation Process and Characteristics for High Efficiency N-type Crystalline Silicon Solar Cell Applications (N-type 고효율 태양전지용 Boron Diffused Layer의 형성 방법 및 특성 분석)

  • Shim, Gyeongbae;Park, Cheolmin;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.139-143
    • /
    • 2017
  • N-type crystalline silicon solar cells have high metal impurity tolerance and higher minority carrier lifetime that increases conversion efficiency. However, junction quality between the boron diffused layer and the n-type substrate is more important for increased efficiency. In this paper, the current status and prospects for boron diffused layers in N-type crystalline silicon solar cell applications are described. Boron diffused layer formation methods (thermal diffusion and co-diffusion using $a-SiO_X:B$), boron rich layer (BRL) and boron silicate glass (BSG) reactions, and analysis of the effects to improve junction characteristics are discussed. In-situ oxidation is performed to remove the boron rich layer. The oxidation process after diffusion shows a lower B-O peak than before the Oxidation process was changed into $SiO_2$ phase by FTIR and BRL. The $a-SiO_X:B$ layer is deposited by PECVD using $SiH_4$, $B_2H_6$, $H_2$, $CO_2$ gases in N-type wafer and annealed by thermal tube furnace for performing the P+ layer. MCLT (minority carrier lifetime) is improved by increasing $SiH_4$ and $B_2H_6$. When $a-SiO_X:B$ is removed, the Si-O peak decreases and the B-H peak declines a little, but MCLT is improved by hydrogen passivated inactive boron atoms. In this paper, we focused on the boron emitter for N-type crystalline solar cells.

A study on the properties of thermally stimulated current of $(Sr_{0.85}-Ca_{0.15})$$TiO_3$ grain boundary layer ceramic ($(Sr_{0.85}-Ca_{0.15})$$TiO_3$ 입계층 세라믹의 열자력전류 특성에 관한 연구)

  • 김진사;김성열;유영각;최운식;이준웅
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.396-403
    • /
    • 1996
  • In this paper, the (S $r_{0.85}$.C $a_{0.15}$)Ti $O_{3}$ of paraelectric grain boundary layer (GBL) ceramics were fabricated, and the analysis of microstructuye and the thermally stimulated current(TSC) were investigated for understanding effects of GBL's interfacial phenomenon on variations of electrical properties. As a result, the three peaks of .alpha., .alpha. and .betha. were obtained at the temperature of -20 [.deg. C], 20[.deg. C] and 80[.deg. C], respectively. The origins of these peaks are that the .alpha. peak observed at -20[.deg. C] looks like to be ascribed to the ionization excitation from donor level in the grain, and the .alpha.' peak observed at 20[.deg. C] appears to show up by detrap of the trapped carrier of border between the oxidation layer and the grain, and the .betha. peak observed at 80[.deg. C] seems to be resulted from hopping conduction of existing carrier in the trap site of the border between the oxidation and second phase. and second phase.

  • PDF

CoFe Layer Thickness and Plasma Oxidation Condition Dependence on Tunnel Magnetoresistance (CoFe의 삽입과 산화조건에 따른 자기 터널 접합의 자기저항특성에 관한 연구)

  • 이성래;박병준
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.196-201
    • /
    • 2001
  • The dependence of CoFe interfacial layer thickness and plasma oxidation condition on tunneling magnetoresistance (TMR) in Ta/NiFe/FeMn/NiFe/Al$_2$O$_3$/NiFe/Ta tunnel junctions was investigated. As the CoFe layer thickness increases, TMR ratio rapidly increases to 13.7 % and decreases with further increase of the CoFe layer thickness. The increase of TMR with the CoFe thickness up to 25 was thought to be due mails to the high spin-polarization of CoFe. The maximum MR of 15.3% was obtained in the Si(100)/Ta(50 )/NiFe(60 )/FeMn(250 )/NiFe(70 )/Al$_2$O$_3$/NiFe(150 )/Ta(50 ) magnetic tunnel junction with a 16 Al oxidized for 40 sec using a Ar/O$_2$ (1:4) mixture gas.

  • PDF

Oxidation of Cr2AlC Carbides at 700-1000℃ in Air (Cr2AlC 탄화물의 700-1000℃에서의 대기중 산화)

  • Won, Sung Bin;Hwang, Yeon Sang;Lee, Dong Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.2
    • /
    • pp.93-98
    • /
    • 2014
  • The $Cr_2AlC$ carbides oxidized at 700, 850 and $1000^{\circ}C$ in air from 70 hours up to 360 days. They oxidized according to the reaction; $Cr_2AlC+O_2{\rightarrow}{\alpha}-Al_2O_3+CO(g)$. The scales consisted primarily of the thin, essentially pure $Al_2O_3$ layer and the underlying Al-dissolved $Cr_7C_3$ layer. They grew via the outward diffusion of Al and carbon, and the inward diffusion of oxygen. The oxidation resistance of $Cr_2AlC$ was excellent due to the formation of the protective $Al_2O_3$ layer. Even when $Cr_2AlC$ oxidized at $1000^{\circ}C$ for 360 days, the ${\alpha}-Al_2O_3$ layer was only about 4 ${\mu}m$-thick.

Formation of $Al_O_3$Barrier in Magnetic Junctions on Different Substrates by $O_2$Plasma Etching

  • Wang, Zhen-Jun;Jeong, Won-Cheol;Yoon, Yeo-Geon;Jeong66, Chang-Wook;Joo, Seung-Ki
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.90-93
    • /
    • 2001
  • Co/$Al_O_3$/NiFe and CO/$Al_O_3$/Co tunnel junctions were fabricated by a radio frequency magnetron sputtering at room temperature with hard mask on glass and $4^{\circ}$ tilt cut Si (111) substrates. The barrier layer was formed through two steps. After the Al layer was deposited, it was oxidized in the chamber of a reactive ion etching system (RIE) with $O_2$plasma at various conditions. The dependence of the TMR value and junction resistance on the thickness of Al layer (before oxidation) and oxidation parameters were investigated. Magnetoresistance value of 7% at room temperature was obtained by optimizing the Al layer thickness and oxidation conditions. Circular shape junctions on $4^{\circ}$tilt cut Si (111) substrate showed 4% magnetoresistance. Photovoltaic energy conversion effect was observed with the cross-strip geometry junctions on Si substrate.

  • PDF

Tunneling Magnetoresistance in Si/$SiO_2$/NiFe/$Al_2$$O_3$/Co Thin Films (Si/$SiO_2$/NiFe/$Al_2$$O_3$/Co 박막의 투과자기저항 특성 연구)

  • 현준원;백주열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.934-940
    • /
    • 2001
  • Magnetic properties were investigated for Si/SiO$_2$/NiFe(300 )/A1$_2$O$_3$(t)/Co(200 ) junction related with the parameters of $Al_2$O$_3$. Insulating $Al_2$O$_3$ layer was formed by depositing a 5~40 thick Al layer, followed by a 90~120s RF plasma oxidation in an $O_2$ atmosphere. Magnetoresistance was not observed for tunnel junction with 5~10 thick Al layer, but magnetoresistance was observed large for tunnel junction with 15~40 thick Al layer. Oxidation time did not largely influence magnetoresistance. Tunnel magnetoresistance effect depended on magnetization behavior of two ferromagnetic layers. Tunneling junction was confirmed through nonlinear I-V curve. In this work, tunneling magnetoresistance(TMR) up to 30 % was observed. This apparent TMR is an artifact of the nonuniform current flow over the junction in the cross geometry of the electrodes.

  • PDF

An Analysis of IGBT(Insulator Gate Bipolar Transistor) Structure with an Additional Circular Trench Gate using Wet Oxidation (습식 산화를 이용한 원형 트렌치 게이트 IGBT에 관한 연구)

  • Kwak, Sang-Hyeon;Kyoung, Sin-Su;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.981-986
    • /
    • 2008
  • The conventional IGBT has two problems to make the device taking high performance. The one is high on state voltage drop associated with JFET region, the other is low breakdown voltage associated with concentrating the electric field on the junction of between p base and n drift. This paper is about the structure to effectively improve both the lower on state voltage drop and the higher breakdown voltage than the conventional IGBT. For the fabrication of the circular trench IGBT with the circular trench layer, it is necessary to perform the only one wet oxidation step for the circular trench layer. Analysis on both the on state voltage drop and the breakdown voltage show the improved values compared to the conventional IGBT structure. Because the circular trench layer disperses electric field from the junction of between p base and n drift to circular trench, the breakdown voltage increase. The on state voltage drop decrease due to reduction of JFET region and direction changed of current path which pass through reversed layer channel. The electrical characteristics were studied by MEDICI simulation results.

A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process (LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구)

  • 강현욱;권현옥;송요승
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

Characteristics of a Titanium-oxide Layer Prepared by Plasma Electrolytic Oxidation for Hydrogen-ion Sensing

  • Lee, Do Kyung;Hwang, Deok Rok;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.76-80
    • /
    • 2019
  • The characteristics of a titanium oxide layer prepared using a plasma electrolytic oxidation (PEO) process were investigated, using an extended gate ion sensitive field effect transistor (EG-ISFET) to confirm the layer's capability to react with hydrogen ions. The surface morphology and element distribution of the PEO-processed titanium oxide were observed and analyzed using field-emission scanning-electron microscopy (FE-SEM) and energy-distribution spectroscopy (EDS). The titanium oxide prepared by the PEO process was utilized as a hydrogen-ion sensing membrane and an extended gate insulator. A commercially available n-channel enhancement MOS-FET (metal-oxide-semiconductor FET) played a role as a transducer. The responses of the PEO-processed titanium oxide to different pH solutions were analyzed. The output drain current was linearly related to the pH solutions in the range of pH 4 to pH 12. It was confirmed that the titanium-oxide layer prepared by the PEO process could feasibly be used as a hydrogen-ion-sensing membrane for EGFET measurements.