• Title/Summary/Keyword: Oxidation Rate

Search Result 1,542, Processing Time 0.023 seconds

Effect of Sintering Additives on the Oxidation Behavior of Hot Pressed Silicon Nitride (가압소결한 질화규소의 산화거동에 미치는 소결 첨가제의 영향)

  • 최헌진;김영욱;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.777-783
    • /
    • 1994
  • Oxidation behavior of hot-pressed silicon nitride ceramics with various sintering additives has been investigated. The weight gain of each specimens has shown in the range of 0.11 mg/$\textrm{cm}^2$ ~3.4 mg/$\textrm{cm}^2$ at 140$0^{\circ}C$ for 192 h and eleven compositions have shown good oxidation resistance with the weight gain below 0.5 mg/$\textrm{cm}^2$. The oxidation rate has been shown to obey the parabolic rate law and the oxidized surface has consisted of $\alpha$-cristobalite and M2Si2O7 or MSiO3 (M=rare earth or transition metals) phase. The oxidation rate of each specimens has related to the eutectic temperature between additive oxide and SiO2, and ionic radius of additive oxides, respectively. From the above results, it could be concluded that the oxidation behavior of hot pressed silicon nitride is dominated by the high temperature properties of grain boundary glassy phase and the high temperature properties of grain boundary glassy phase are affected by the ionic radius of additive oxides.

  • PDF

Adsorption and Oxidation Reaction Rate of $SO_2$ in Slurries of Activated Carbon (활성탄 슬러리를 이용한 $SO_2$ 가스의 흡착 및 산화반응 속도)

  • 최용택;신창섭;이태희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.41-46
    • /
    • 1987
  • Adsorption and reaction studies were made for the catalytic oxidation in aqueous slurries of activated carbon at room temperature and atmospheric pressure. In order to analyze the reaction rate, the mechanism was assumed by the steps of nonhomogeneous catalytic reaction. The experimental result show that oxidation rate was controlled by the reaction between adsorbed molecular oxygen and sulfur dioxide on the catalyst surface. Ar room temperature, the equat5ion of reaction rate was given as $ro_2 = 2.49 \times 10^{-7} P_O_2^{0.604}$.

  • PDF

The effects of pile dup Ge-rich layer on the oxide growth of $Si_{1-x}Ge_{x}$/Si epitaxial layer (축적된 Ge층이 $Si_{1-x}Ge_{x}$/Si의 산화막 성장에 미치는 영향)

  • 신창호;강대석;박재우;송성해
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.449-452
    • /
    • 1998
  • We have studied the oxidatio nrte of $Si_{1-x}Ge_{x}$ epitaxial layer grown by MBE(molecular beam epitaxy). Oxidation were performed at 700.deg. C, 800.deg. C, 900.deg. C, and 1000.deg. C. After the oxidation, the results of AES(auger electron spectroscopy) showed that Ge was completely rejected out of the oxide and pile up at $SiO_{2}/$Si_{1-x}Ge_{x}$ interface. It is shown that the presence of Ge at the $SiO_{2}$/$Si_{1-x}Ge_{x}$ interface changes the dry oxidation rate. The dry oxidation rate was equal to that of pure Si regardless of Ge mole fraction at 700.deg. C and 800.deg.C, while it was decreased at both 900.deg. C and 1000.deg.C as the Ge mole fraction was increased. The ry oxidation rates were reduced for heavy Ge concentration, and large oxidation time. In the parabolic growth region of $Si_{1-x}Ge_{x}$ oxidation, The parabolic rate constant are decreased due to the presence of Ge-rich layer. After the longer oxidation at the 1000.deg.C, AES showed that Ge peak distribution at the $SiO_{2}$/$Si_{1-x}Ge_{x}$ interface reduced by interdiffusion of silicon and germanium.

  • PDF

Characteristics in Oxidation of Korean Corn Starch with Sodium Hypochlorite (Hypochlorite에 의한 한국산 옥수수 전분의 산화특성)

  • Han, Jin-Suk;Ahn, Seung-Yo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1094-1100
    • /
    • 1997
  • Effects of sodium hypochlorite (NaOCl) concentration, temperature and pH on oxidation mechanism of corn starch were investigated. The rate of oxidation was dependent on the concentration of hypochlorite, pH and temperature of oxidation. The reaction was either first or second order depending on the concentration of NaOCl. At oxidant concentration of $0.75{\sim}3.0%$ active Cl/g starch, the reaction was first-order and it was second-order at $3.75{\sim}4.5%$ active Cl/g starch. The first-order rate constants were increased with increasing oxidant concentration. The rate of oxidation of starch was highest at pH 7 and decreased with increasing acidity or alkalinity of the medium. As the reaction temperature increased, the rate of oxidation was increased.

  • PDF

Decomposition Characteristics of Dissolved Organic Compounds in the Landfill Leachate by Ozone Oxidation (오존산화에 의한 매립지 침출수내 용존성 유기화합물의 분해 특성)

  • 정승현;이헌모;정병곤
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • The effect of ozone oxidation on bio-degradability of leachate was studied. Ozone oxidation process was used as pre-treatment process to enhance performance of biological process in treating landfill leachate. Optimum ozone injection rate and contact time in this experiment was $160{\;}mg{\;}O_/{\ell}{\cdot}hr$ and 45 minutes, respectively. Bio-degradability was enhanced 5.08% by ozone oxidation. The ratio of ozone demand/DOC concentration was $0.049~0.091{\;}mg{\;}O_3/mg{\;}DOC$. The increase of bio-degradability depending on ozone injection rate(D) and contact time(T) can be expressed as follows ; The rate of bio-degradation of DOC was increased proportionally with the increase of ozone injection rate and contact time irrespective of landfill site age. The increase of bio-degradability by ozone addition was not satisfactory. It is hard to expect significant increase in bio-degradability by ozone treatment only. Thus, it is evaluated that ozone oxidation can not increase biodegradability significantly in concentrated wastewater composed of complex organic compound such as leachate.

Effect of Ozone Oxidation on Biodegradability of Dissolved Organic Compounds in the Landfill Leachate (오존산화가 매립지 침출수내 용존성 유기화합물의 생분해도에 미치는 영향)

  • Jeong, Seung-Hyun;Jeong, Byung-Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • The effect of ozone oxidation on biodegradability of leachate was studied. Ozone oxidation process was used as pre-treatment process to enhance performance of biological process in treating landfill leachate. Optimum ozone dosing rate and contact time in this experiment was $160mg\;O_3/L$ hr and 45 minutes, respectively. Biodegradability was enhanced 5.08% by ozone oxidation. The ratio of ozone demand/DOC concentration was $0.049{\sim}0.091mg\;O_3/mg$ DOC. The increase of biodegradability depending on ozone dosing rate(D) and contact time(T) can be expressed as follows ; ${\Delta}E=0.00479{\cdot}D^{0.773}{\cdot}T^{0.800}$ The biodegradation rate of DOC was increased proportionally with the increase of ozone dosing rate and contact time irrespective of landfill site age. The increase of biodegradability by ozone addition was not satisfactory. It is hard to expect significant increase in biodegradability by ozone treatment only. Thus, it is evaluated that ozone oxidation can not increase biodegradability significantly in concentrated wastewater composed of complex organic compound such as leachate.

The Oxidation of Specpure Nickel (Specpure Nikel의 Oxidation)

  • Choi, Jae-Shi;Sin, Soo-Hee;Lee, Kyu-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.153-157
    • /
    • 1966
  • The measurement of Oxidation of nickel has been investigated using vacuum quartz microbalance in the temperature range of $500^{\circ}{\sim}800^{\circ}C$ at various oxygen pressure. The rate constants of nickel-oxidation were evaluated according to the parabolic rate law. From the Arrhenius equation, the activation energy in the range of experimental temperatures were found that $E_{act}$= 35.4 Kcal/mole. It was also found that the parabolic rate constants varied approximately as the one fifth power of the oxygen pressure for nickel-oxidation. The mechanism for the oxidation of this metal were seemed to be via cation vacancy produced by excess of oxygen dissolved in the oxide film.

  • PDF

Effect of Ge Redistribution and Interdiffusion during Si1-xGex Layer Dry Oxidation (Si1-xGex 층의 건식산화 동안 Ge 재 분포와 상호 확산의 영향)

  • Shin, Chang-Ho;Lee, Young-Hun;Song, Sung-Hae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1080-1086
    • /
    • 2005
  • We have studied the Ge redistribution after dry oxidation and the oxide growth rate of $Si_{1-x}Ge_x$ epitaxial layer. Oxidation were performed at 700, 800, 900, and $1,000\;^{\circ}C$. After the oxidation, the results of RBS (Rutherford Back Scattering) & AES(Auger Electron Spectroscopy) showed that Ge was completely rejected out of the oxide and pile up at $Si_{1-x}Ge_x$ interface. It is shown that the presence of Ge at the $Si_{1-x}Ge_x$ interface changes the dry oxidation rate. The dry oxidation rate was equal to that of pure Si regardless of Ge mole fraction at 700 and 800$^{\circ}C$, while it was decreased at both 900 and $1,000^{\circ}C$ as the Ge mole fraction was increased. The dry of idation rates were reduced for heavy Ge concentration, and large oxiidation time. In the parabolic growth region of $Si_{1-x}Ge_x$ oxidation, the parabolic rate constant are decreased due to the presence of Ge-rich layer. After the longer oxidation at the $1,000^{\circ}C$, AES showed that Ge peak distribution at the $Si_{1-x}Ge_x$ interface reduced by interdiffusion of silicon and germanium.

Net Methane Oxidation Performance of Anaerobic Sewage Sludge

  • Yi, Taewoo;Kim, Tae Gwan;Lee, Eun-Hee;Lee, Jung-Hee;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1452-1456
    • /
    • 2012
  • The anaerobic oxidation of methane (AOM) in anaerobic sewage sludge was characterized. The net methane oxidation was observed in samples amended with methane plus sulfate or with methane alone, whereas methane formation was observed in the samples without methane, indicating that methane oxidation and formation occurred simultaneously. The ratio of the net methane oxidation rate to $H_2S$ formation was 100:1, suggesting that the AOM was not closely associated with sulfate reduction in the anaerobic sludge. The net AOM was positively associated with the methane concentration and sludge dilution ratio. However, the rate of AOM was negatively correlated with organic substrate (acetate) concentration. Therefore, the production and oxidation of methane could be controlled by environmental conditions and dissolved organic compounds in the bulk solution.

Interaction Metal Ions with NADH Model Compounds. Cupric Ion Oxidation of Dihydronicotinamides

  • Park, Joon-Woo;Yun, Sung-Hoe;Koh Park, Kwang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.298-303
    • /
    • 1988
  • Kinetic studies on cupric ion ($Cu^{2+}$) oxidation of 1-benzyl- and 1-aryl-1,4-dihydronicotinamides (XNAH) in aqueous solution were performed. In the presence of dioxygen ($O_2$), the reaction followed first order kinetics with respect to both XNAH and $Cu^{2+}$. The oxidation reaction was found to be independent and parallel to the acid-catalyzed hydration reaction of XNAH. The catalytic role of $Cu^{2+}$ for the oxidation of XNAH in the presence of $O_2$ was attributed to $Cu^{2+}/Cu^+$ redox cycle by the reactions with XNAH and $O_2$. The second order rate constants of the Cu2+ oxidation reaction kCu, and acid-catalyzed hydration reaction $k_H$ were strongly dependent on the nature of the substituents in 1-aryl moiety. The slopes of log $k_{Cu}$ vs log $K_H$ and log $k_{Cu}$ vs ${\sigma}_p$ of the substituents plots were 1.64 and -2.2, respectively. This revealed the greater sensitivity of the oxidation reaction rate to the electron density on the ring nitrogen than the hydration reaction rate. A concerted two-electron transfer route involving XNAH-$Cu^{2+}$ complex was proposed for mechanism of the oxidation reaction.