• Title/Summary/Keyword: Oxidation Mechanism

Search Result 666, Processing Time 0.031 seconds

Si-buffer pinholes in the SEPOX (selective poly oxidation) process (SEPOX (selective poly oxidation) process에서 Si-buffer layer에 발생하는 pinhole 현상에 대한 연구)

  • 윤영섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.151-157
    • /
    • 1996
  • We propose a mechanism for the formation of pinholes in the Si-buffer layer, through the observations with varying the process- and structure variables in the SEPOX (selective poly-oxidation) process, an isolation method for sub-u DRAMs. Pinholes are formed through the accumulation of Si vacancies generated by the oxidation of Si, in which Si atoms leave the sites (vacancies) at the Si/SiO$_{2}$ interfaces and diffuse into the oxide to be oxidized near interface. In the course of the accumulation of Si-vacancies, the stress induced in the Si-buffer layer affects the migration of vacancies to result in the final size and distribution of pinholes. This paper may be, to our knowledge, the first report about the oxidation-induced pinhole in the Si/SiO$_{2}$ system.

  • PDF

Evaluation of effective process for oxidation and coagulation by ferrous ion and hydrogen peroxide

  • Moon, H.J.;Kim, Y.M.;Lee, S.H.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.319-321
    • /
    • 2003
  • This research was carried out to evaluate the removal efficiencies of CODcr and colour for the dyeing wastewater by ferrous solution in Fenton process. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of CODcr and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

  • PDF

Gas Permeation Characteristics of Porous Alumina Membrane Prepared by Anodic Oxidation (양극산화에 의한 다공성 알루미나 막의 기체투과 특성)

  • 함영민
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.72-78
    • /
    • 1998
  • For investigation into gas permeation characteristics, the porous alumina membrane with asymmetrical structure, having upper layer with 10 nanometer under of pore diameter and lower layer with 36 nanometer of pore diameter, was prepared by anodic oxidation using DC power supply of constant current mode in an aqueous solution of sulfuric acid. The aluminium plate was pre-treated with thermal oxidation, chemical polishing and electrochemical polishing before anodic oxidation. Because the pore size depended upon the electrolyte, electrolyte concentration, temperature, current density, and so on, the the membranes were prepared by controling the current density, as a very low current density for upper layer of membrane and a high current density for lower layer of membrane. By control of current quantity, the thicknesses of upper layer of membranes were about $6{\;}{\mu}m$ and the total thicknesses of membranes were about $80-90{\;}{\mu}m$. We found that the mechanism of gas permeation depended on model of the Knudsen flow for the membrane prepared at each condition.

  • PDF

Influence of Ligand on Oxidation of Cyclohexane in the Biomimetic System (생체모방계에 의한 시클로헥산 산화반응에서 리간드의 영향)

  • Kim, Seong-Bo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.202-205
    • /
    • 2005
  • The effects of ligands on reactivity under GoAgg oxidation system have been studied. Picolinic acid containing carboxylic acid showed the most excellent activity among various ligands. Also, Picolinic acid of ortho position carboxylic group in pyridine ring largely increased reaction rates in the GoAgg oxidation systems. From these results, we proposed the new mechanism on the GoAgg oxidation using ligands having carboxylic group at ortho position.

Change of Capacitance on Maganese Dioxide Electrode for Supercapacitor by Oxidation Treatment (수퍼커패시터용 산화망간전극의 산화처리에 의한 용량 변화)

  • 김한주;홍지숙;신달우;김용철;김성호;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.946-949
    • /
    • 2000
  • Amorphous MnO$_2$$.$ nH$_2$O in 1M KOH aqueous electrolyte proves to be an excellent electrode for a faradic electrochemical capacitor cycled between -0.5 and +1.0 versus Ag/AgCl. In order to observe morphology and crystalline structure of MnO$_2$powder, we analyzed it by XRD and SEM. The effect of oxidation treatment on MnO$_2$electrode was observed by different oxidation voltages. A maximum capacitance of 364F/g was obtained by 1.1V oxidation treatment. This capacitance was attributed solely to a surface redox mechanism

  • PDF

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

Piston Crevice Hydrocarbon Oxidation During Expansion Process in an SI Engine

  • Kyoungdoug Min;Kim, Sejun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.888-895
    • /
    • 2003
  • Combustion chamber crevices in SI engines are identified as the largest contributors to the engine-out hydrocarbon emissions. The largest crevice is the piston ring-pack crevice. A numerical simulation method was developed, which would allow to predict and understand the oxidation process of piston crevice hydrocarbons. A computational mesh with a moving grid to represent the piston motion was built and a 4-step oxidation model involving seven species was used. The sixteen coefficients in the rate expressions of 4-step oxidation model are optimized based on the results from a study on the detailed chemical kinetic mechanism of oxidation in the engine combustion chamber. Propane was used as the fuel in order to eliminate oil layer absorption and the liquid fuel effect. Initial conditions of the burned gas temperature and in-cylinder pressure were obtained from the 2-zone cycle simulation model. And the simulation was carried out from the end of combustion to the exhaust valve opening for various engine speeds, loads, equivalence ratios and crevice volumes. The total hydrocarbon (THC) oxidation in the crevice during the expansion stroke was 54.9% at 1500 rpm and 0.4 bar (warmed-up condition). The oxidation rate increased at high loads, high swirl ratios, and near stoichiometric conditions. As the crevice volume increased, the amount of unburned HC left at EVO (Exhaust Valve Opening) increased slightly.

The Oxidation of Kovar in Humidified $N_2$/H$_2$ Atmosphere (가습된 $N_2$/H$_2$혼합가스 분위기에서의 Kovar 산화 거동)

  • 김병수;김민호;김상우;최덕균;손용배
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • In order to form a uniform oxidation layer of spinel phase on Kovar which helps the strong bonding in Kovar-to-glass sealing, the humidified $N_2/H_2$ was used as an oxidation atmosphere. The oxidation of Kovar was controlled by diffusion mechanism and the activation energy was 31.61 kacl/mol at 500~$800^{\circ}C$. After oxidation at $600^{\circ}C$, the external oxidation layer was below 0.5 $\mu \textrm{m}$ thick. According to TEM analysis, oxidized Kovar was spinel its lattice parameter of 7.9 $\AA$. Oxidation of under $600^{\circ}C$ and in a humidified $N_2/H_2$ atmosphere, Kovar was found to be appropriate for the Kovar-to-glass sealing.

  • PDF

Cyclic Oxidation Behavior of Fe-Cr-Al Joint Brazed with Nickel-Base Filler Metal (Ni계 합금으로 브레이징된 Fe-Cr-Al 합금 접합부의 주기산화거동)

  • Mun, Byeong-Gi;Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.29
    • /
    • pp.141-149
    • /
    • 1999
  • Brazing of Fe-Cr-Al alloy was carried out at $1200^{\circ}C$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si-Fe base alloy} and MBF-50 foil (Ni-Cr-Si-B). The effect of boron content on the stability of oxide scale on the brazed joint was investigated by means of cyclic oxidation test performed at $1050^{\circ}C$ and $1200^{\circ}C$. Apparently, the joints brazed with MBF-50 containing boron showed relatively stable oxidation rates compared to boron-free BNi-5 at both temperatures. However, it was considered that the slower weight loss of MBF-50 brazed specimen wasn’t resulted from the low oxidation rate but from the spallation of oxide layer. The oxide layer consisted of thick spinel oxide on the surface and $Al_2 O_3$ internal oxide layer along the interface between mother alloy and braze, the mother alloy was also eroded seriously by the formation of spinel oxides such as $FeCr_2 O_4$ and $NiCr_2 O_4$ on the surface, likely to be induced by the change of oxide forming mechanism due to diffusion of boron from the braze. On the contrary, the joint brazed with BNi-5 showed the good oxidation resistance during the cyclic oxidation test. It seems that the oxidation can be retarded by the formation of stable $Al_2 O_3$ layer at the surface.

  • PDF

Large-Scale Synthesis of Cu2O Nanowires by Thermal Oxidation Method (열 산화법을 이용한 Cu2O 나노선의 대면적 합성)

  • Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.388-392
    • /
    • 2014
  • $Cu_2O$ nanowires were synthesized at large scale on copper plate by thermal oxidation in air. The effect of oxidation time and temperature on the morphology of the nanowires was examined. The oxidation time had no effect on the diameter of the nanowires, while it had a great effect on the density and the length of the nanowires. The density and the length of the nanowires increased, and then decreased, with increasing oxidation time. The oxidation temperature had a tremendous effect on the size-distribution as well as the density of the nanowires. When the oxidation temperature was $700^{\circ}C$, uniform size-distribution and high density of the nanowires was achieved. At lower and higher temperatures, the density of the nanowires was lower, and they displayed a broader size-distribution. It is suggested that the $Cu_2O$ nanowires were grown via a vapor-solid mechanism because no catalyst particles were observed at the tips of the nanowires.