• Title/Summary/Keyword: Oxidation Kinetic

Search Result 236, Processing Time 0.021 seconds

Identification of an Essential Tryptophan Residue Residue in Alliinase from Garlic (Allium sativum) by Chemical Modification

  • Jin, Yeong Nam;Choe, Yong Hun;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • We have employed chemical modification to identify amino acids essential for the catalytic activity of alliinase (EC 4.4.1.4) from garlic (Allium sativum). Alliinase degrades S-alkyl-L cysteine sulfoxides, causing the characteristic odor of garlic. The activity of alliinase was rapidly and completely inactivated by N-bromosuccinimide(NBS) and slightly decreased by succinic anhydride and N-acetylimidazole. These results indicate that tryptophanyl, lysyl, and tyrosyl residues play an important role in enzyme catalysis. The reaction of alliinase with NBA yielded a characteristic decrease in both the absorbance at 280 nm and the intrinsic fluorescence at 332 nm with increasing reagent concentration of NBS, consistent with the oxidation of tryptophan residues. Kinetic analysis, fluorometric titration of tryptophans and correlation to residual alliinase activity showed that modification of only one residue present on alliinase led to complete inhibition of alliinase activity. To identify this essential tryptophan residue, we employed chemical modification by NBS in the presence and absence of the protecting substrate analogue, S-ethyl-L-cysteine (SEC) and N-terminal sequence analysis of peptide fragment isolated by reverse phase-HPLC. A fragment containing residues 179-188 was isolated. We conclude that Trp182 is essential for alliinase activity.

Removal Properties of Nickel and Copper ions by Activated Carbon and Carbon Nanotube (활성탄과 카본나노튜브를 이용한 수용액상의 니켈과 구리 제거 특성)

  • Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.410-416
    • /
    • 2018
  • This experiment was carried out with the purpose of testing nickel and copper adsorption abilities of multi wall carbon nanotube (MWCNT) and activated carbon. In the acidic condition, only MWCNT was effective for removing nickel and copper ion in the aqueous phase while activated carbon rarely remove them. The MWCNT and heavy metals adsorption reaction followed pseudo-first order kinetic. When the initial pH value was neutral (pH=7), nickel was rapidly removed by MWCNT and activated carbon in 4 hr (99.02 %, 80.30 %). Also, copper ion was rapidly removed by both adsorbents in 4 hr when the initial pH was 7 (100 %, 99.73 %). Increasing of adsorbent dosages affect the pH evolution and heavy metal ions removal (0 ~ 99%). Also, oxidation pretreatment enhanced the adsorption efficiency of MWCNT.

Catalytic Spectrophotometry for the Determination of Manganese at Trace Levels by a Novel Indicator Reaction (새로운 지시약 반응에 의해 극미량 수준의 망간 측정을 위한 촉매 반응의 분광 광도 측정법)

  • Gurkan, Ramazan;Caylak, Osman
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.556-566
    • /
    • 2010
  • A new kinetic spectrophotometric method is developed for the measurement of Mn(II) in natural water samples. The method is based on the catalytic effect of Mn(II) with the oxidation of Gallocyanin by $KIO_4$ using nitrilotriacetic acid (NTA) as an activation reagent at 620 nm. The optimum conditions obtained are $4.00{\times}1^{-5}\;M$ Gallocyanin, $KIO_4$, $1.00{\times}10^{-4}\;M$ NTA, 0.1 M HAc/NaAc buffer of pH = 3.50, the reaction time of 5 min and the temperature of $30^{\circ}C$. Under the optimum conditions, the proposed method allows the measurement of Mn(II) in a range of $0.1\;-\;4.0\;ng\;mL^{-1}$ and with a detection limit of down to $0.025\;ng\;mL^{-1}$. The recovery efficiency in measuring the standard Mn(II) solution is in a range of 98.5 - 102%, and the RSD is in a range of 0.76 - 1.25%. The newly developed kinetic method has been successfully applied to the measurement of Mn(II) in both some environmental water samples and certified standard reference river water sample, JAC-0031 with satisfying results. Moreover, few cations and anions interfere with the measurement of Mn(II). Compared with the other catalytic-kinetic methods and instrumental methods, the proposed kinetic method shows fairly good selectivity and sensitivity, low cost, cheapness, low detection limit and rapidity. It can easily and successfully be applied to the real water samples with relatively low salt content and complex matrices such as bottled drinking water, cold and hot spring waters, lake water, river water samples.

Removal of Chloramphenicol, Salicylic Acid and Ketoprofen using Various Oxidation Processes : Oxidation Kinetic Evaluation (다양한 산화공정을 이용한 수중의 Chloramphenicol, Salicylic Acid 및 Ketoprofen 의약물질 제거 : 산화 동력학 평가)

  • Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.219-226
    • /
    • 2010
  • In order to evaluate a removal characteristic of chloramphenicol, salicylic acid and ketoprofen according to dose of oxidants, $Cl_2$, $O_3$ and $O_3/H_2O_2$ are used as oxidants in this study. In case of that $Cl_2$ is used for oxidizing harmaceuticals, chloramphenicol, salicylic acid and ketoprofen is not removed entirely at $Cl_2$ dose rang of 0.5~5.0 mg/L for 60 min. However, removal tendency of salicylic acid is so obviously at $Cl_2$ dose higher than 1.0 mg/L. In addition, as $Cl_2$ dose and contact time increase, the removal rate of salicylic acid is enhanced. When $O_3$ is used as oxidant, chloramphenicol and ketoprofen is not eliminated at $O_3$ dose range of 0.2~2.0 mg/L. On the contrary, 30~70% of salicylic acid is removed at $O_3$ dose of 1.0~5.0 mg/L. Only 30% removal of salicylic acid is achieved at contact time of 5 min, however, the removal rate is enhanced remarkably at contact time over 10 min. In experiments using $O_3/H_2O_2$ as an oxidant, we can find that $O_3/H_2O_2$ is much more effective than $O_3$ only for removal of 3 pharmaceuticals, and the efficiency is raised according to increase of $H_2O_2$ dose. On reaction rate constant and half-life of 3 pharmaceuticals depending on $Cl_2$, $O_3$ and $O_3/H_2O_2$ dose, experiments using $O_3/H_2O_2$ show that oxidation of pharmaceuticals is less effective as the $H_2O_2/O_3$ ratio increases to above pproximately 1.0 related to reaction rate constant. An oxidation of salicylic acid by $Cl_2$ and $O_3$ particularly has a comparatively high reaction rate constant comparing $O_3/H_2O_2$, and thus salicylic acid is easily eliminated in oxidation processes.

Oxidation of Geosmin and 2-MIB in Water Using $O_3/H_2O_2$: Kinetic Evaluation (오존과 과산화수소를 이용한 Geosmin과 2-MIB 산화: 동력학적 평가)

  • Lee, Hwa-Ja;Son, Hee-Jong;Roh, Jae-Soon;Lee, Sang-Won;Ji, Ki-Won;Yoo, Pyung-Jong;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.826-832
    • /
    • 2007
  • Unpleasant tastes and odors in drinking water cause same problems for water utilities across Korea. Even though tastes and odors do not create health problems, they are main concerns for consumers who determine the safety of their drinking water. In this study, two different odor producing compounds(geosmin 2-MIB) in the Nakdong river water and rapid sand filtered rater were treated by advanced oxidation of $O_3/H_2O_2$ process. The experimental results showed that the removal efficiency of geosmin with the use of 5 mg/L of $O_3$ and $H_2O_2$ was higher than efficiency with the use of $O_3$ alone for both the raw water and the sand filtered water. And in general, the removal efficiency of geosmin was higher than 2-MIB in the sand filtered water. Under the range of $O_3$ concentration $0.5\sim2.0$ mg/L, the removal rate constants(k) of geosmin for the raw and sand filtered waters, and the one of 2-MIB in the sand filtered water were increased rapidly as doses of $O_3$, and $H_2O_2$, increased. The removal rate constants(k) do not increase any more when $H_2O_2/O_3$ ratio increases above the optimum ratio. The optimum ratio of $H_2O_2/O_3$, dose was $1.0\sim2.0$ for both geosmin and 2-MIB. The removal rate constant(k) becomes lower when OH radical consuming materials are present in raw water. The half-life of geosmin decreased rapidly as the $O_3$ and $H_2O_2$ doses increase in the sand filtered water. The half life decreased about 8.5 times with the use of 2 mg/L of $O_3$ and 10 mg/L of $H_2O_2$ than with the use of 2 mg/L of $O_3$ alone for the sand filtered water.

Characterization of Lipoxygenase in AOT/Isooctane Reversed Micelles (AOT/isooctane 역미셀계내에서의 lipoxygenase 반응 특성)

  • Chang, Pahn-Shick;Lee, Kwang-In
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.157-163
    • /
    • 2002
  • An investigation was carried out to study the characteristics of lipoxygenase in dioctyl sulfosuccinate (aerosol-OT, AOT)/isooctane revered micelles of microaqueous system containing infinitesimal water. ${\alpha}-Linoleic$ acid as a substrate could be analyzed by the colorimetric methodology using 5%(w/v) cupric acetate-pyridine solution and the activity of lipoxygenase was able to be assayed by the degree of ${\alpha}-linoleic$ acid consumption per minute. Optimal pH, temperature, and R-value ([water]/[AOT]) were determined as the value of 5.0, $25^{\circ}C$, and 10.0, respectively. Kinetic analysis of the enzyme reaction under the optimal conditions showed that the values of $K_m$ and $V_{max}$ were 0.31 mM of ${\alpha}-linoleic$ acid and $384.16{\mu}mol$ of ${\alpha}-linoleic$ acid decomposed/min, respectively. The results indicate the reaction to be lipoxygenase-catalyzed oxidation of ${\alpha}-linoleic$ acid in AOT/isooctane reversed micellar system. The inhibitory effect of natural antioxidants on lipoxygenase showed little inhibitory effect of L-ascrobic acid while ${\alpha}-tocopherol$ showed 72% of inhibitory effect.

Change of Sludge Denitrification and Nitrification Rate according to the Operating Conditions in Advanced Wastewater Treatment Processes (하수고도처리공법의 유입하수량 변화에 따른 슬러지 질산화/탈질속도 변화)

  • Lee, Myoung-Eun;Oh, Jeongik;Park, No-Suk;Ko, Dae-Gon;Jang, Haenam;Ahn, Yongtae
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • The purpose of this study is to investigate the changes of sludge characteristics according to the changes of influent sewage flowrate in the advanced wastewater treatment processes including MBR, SBR, and $A_2O$. The ratio of the actual sewage flowrate to the design flowrate is decreased from 100% to 70, 40%, and 10%, and the specific denitrification rate and ammonia oxidation (nitrification) rate was measured. The specific nitrification rate of the sludge collected from the aeration tank of each process was measured at a similar value ($0.10gNH_4/gMLVSS/day$) in all three process under the condition of 100% of sewage flowrate. It has tended to decrease significantly as the sewage flowrate decreased from 70% to 40%. The specific denitrification rate was also decreased by ~50% as the sewage flowrate decreased. However, considering the total nitrogen concentration in the influent and the microbial concentration in the reactor, the changes in kinetic parameter did not affect overall nitrogen removal. Therefore, it can be concluded that stable nitrogen removal will be possible under low influent flowrate condition if the MLVSS concentration is kept high.

A Kinetic Study on the Oxidation of Diphenylmethane under Aliquat 336 Phase Transfer Catalyst (Aliquat 336 상이동 촉매하에서 디페닐메탄의 산화반응에 관한 속도론적 연구)

  • Lee, Hwa-Soo;Moon, Jeong-Yeol;Na, Suk-En;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.373-377
    • /
    • 1994
  • A mechanism for the synthesis of benzophenone from oxidation of diphenylmethane under Aliquit 336 phase transfer catalyst is investigated in this study. The production rate of benzophenone increased with the increasing amount of Allquat 336 and potassium tert-butoxide. At low concentrations of diphenylmethane and oxygen, the reaction order was first with the concentrations of diphenylmethane and oxygen respectively, but it approached to zero order at high concentrations. Tert-butyl alcohol, by-product of the reaction, inhibited the formation of benzophenone. Experimental results fit fairly well to the following initial reaction rate equation derived from reaction mechanism. $$({\gamma}_{BP})_0={\frac{k_1k_3k_5[QCI]_0[DPM]_0[PTB]_0[O_2]_0}{k_2k_4[TBA]_0+k_2k_5[O_2]_0+k_3k_5[O_2]_0[DPM]_0}}$$

  • PDF

Characteristics of Glucose Oxidase Reaction of Onion Juice (양파 착즙액과 포도당 산화효소의 반응 특성)

  • Choi, Bong-Young;Lee, Eun-Mi;Kim, Young-Ran;Kim, Hyun-Jong;Chung, Bong-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.417-422
    • /
    • 2003
  • The onions are considered to be a favorable functional source of beverage because they contain much sugar and various nutrients, and they are juicy vegetable. Recently, consumers have a new trend to take functional foods with health benefits. To meet this need, this study was the basic research to establish a manufacturing process of functional onion beverage by glucose oxidase. Glucose oxidase catalyzes reaction of glucose oxidation and makes generation of gluconic acid. Kinetics of the reaction was also investigated, and maximum glucose consumption rate $(V_{max})$ of $26.1{\times}10^{-2}\;g/L{\cdot}min$ and $K_m$ of 5.84 g/L were obtained. Optimum conditions were obtained when the glucose oxidase catalyzed reaction was carried out at temperature of $25^{\circ}C$, agitation rate of 450 rpm and aeration rate of 4 vvm in a 2.5 L jar fermentor. Finally, the enzyme reactor was 10-times scaled up and a similar glucose oxidation performance was achieved in the scaled-up reactor.

Characterization of Anionic Peroxidase Induced by Low Host-Specific Elicitor in Suspension Cultures of Rose (Rosa sp.) (장미(Rosa sp.) 현탁배양세포에서 숙주 특이성이 낮은 Elicitor에 의해 유도되는 Anionic Peroxidase의 특성)

  • 신미선;양은진;이인철
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.277-282
    • /
    • 1998
  • Whereas cationic extracellular peroxidases (PODs) were observed in the suspension cultures of rose (Rosa sp. L. cv Pual's scarlet) grown under normal conditions, new anionic isozymes were induced within 24 hr by the treatment of low host-specific elicitor (10 mg glucan/L media) prepared from yeast cell wall. Prominent anionic (pI 6.1) and cationic POD (pI 8.4) were purified and characterized to understand the physiological role of the enzymes. Both enzymes were purified (ca.200 fold) by the ammonium sulfate precipitation, ion exchange chromate-graphy and gel filtration chromatography. The Km values of the purified anionic POD for ferulic acid and $\textrm{H}_2\textrm{O}_2$ were 4.64 mM and 0.72 mM, whereas those of the cationic POD were 1.38 mM and 0.48 mM, respetively. The activity of the anionic POD as NADH oxidase was twice higher than that of cationic POD. The NADH oxidation in the anionic POD fraction was inhibited by 60% on the addition of 0.1 mM coniferyl alcohol, while that in the cationic fraction was inhibited by 15%.

  • PDF